

Market-leading fluid control solutions addressing the world's most critical needs



# **Table of Contents:**

| Introduction                                                |     |
|-------------------------------------------------------------|-----|
| Emerson – your Partner in Analytical and Medical Technology | 5   |
| ISO Class 8 equivalent Cleanroom Manufacturing              | 6   |
| Global Infrastructure                                       | 7   |
| Applications                                                | 8   |
| Medical Technologies                                        | 8   |
| Analytical Technologies                                     | 9   |
| Emerson's Solutions Approach                                | 10  |
| Rapid Engineered Solutions                                  | 10  |
| Capabilities                                                | 11  |
| Fluid Isolation Valves                                      | 12  |
| General Service Valves                                      | 14  |
| Proportional Valves                                         | 16  |
|                                                             |     |
| Datasheets                                                  |     |
| Fluid Isolation Valves                                      | 21  |
| General Service Valves                                      | 77  |
| Proportional Valves                                         | 135 |
| Manifolds & Accessories                                     | 153 |
|                                                             |     |
| Engineering Information                                     |     |
| Solenoid Valves – Information & Terminology                 | 169 |
| Chemical Resistance Guide                                   | 173 |
| Conversion Tables                                           | 177 |

# Emerson – your Partner in Analytical and Medical Technology



Emerson fluid control solutions help customers maximize instrument efficiencies and optimize their Medical & Analytical applications. Our global scale increases speed to market and shapes how we work with customers. Our deep expertise across applications rapidly transforms ideas into measurable outcomes.

We offer miniature Isolation, Pinch, Proportional, and General Service valves to reliably control gases and liquids. To adhere to the quality and reliability standards necessary for today's applications, all valves are 100% factory tested before being shipped to our valued customers.

Our miniature valves can be found throughout the world in applications such as:

- Bioinstrumentation
- Chromatography
- Clinical Diagnostics
- Dental Equipment
- Hemodialysis
- Industrial Analyzers

- Oxygen Therapy
- Patient Monitoring
- Sterilizers
- Surgical Instruments
- Therapy Equipment
- Ventilators

In addition to our comprehensive catalog product offering, we have the expertise to create customized assemblies that provide the precise solution to meet your fluid control needs. Whether you need a minor modification of a catalog product or a complete flow control solution, our trained sales and engineering teams are ready to assist.



# ISO Class 8 equivalent Cleanroom Manufacturing

Emerson takes great care to minimize contamination during manufacturing. That's why Emerson's miniature valves are assembled in ISO Class 8 equivalent cleanrooms.

## **Key Points:**

- State-of-the-art ISO Class 8 equivalent cleanrooms with positive pressure HEPA air filtration systems monitored daily
- Staff members enter and leave through airlocks with air shower stage and wear protective hair nets, finger cots, shoe covers, lab coats, and masks (when required) to reduce contamination potential
- The environment is controlled for humidity and temperature
- Valve components are ultrasonically cleaned to remove any contaminate prior to assembly

## **Global Infrastructure**

With 8,000 employees worldwide supporting our Fluid Control & pneumatics product lines, working from manufacturing and sales offices in over 45 countries, Emerson is ready to handle your most demanding design challenges. Whether you need a minor modification of a catalog product or a complete flow control system, our trained sales and engineering staff are ready to assist.

## **Fluid Control & Pneumatics**

With manufacturing facilities in Europe, America and Asia you can be assured that you will get the right product, when you need it.



# **Medical Technologies**



## Focus on safety for patients

We specialize in developing fluid handling solutions for medical devices and processes used to monitor and/or treat diseases or medical conditions, with the intent to improve quality of life. Our design engineers have decades of experience in creating solutions that support our customers exact requirements.

The ASCO miniature valve product line is ideally suited for use in the following medical applications:

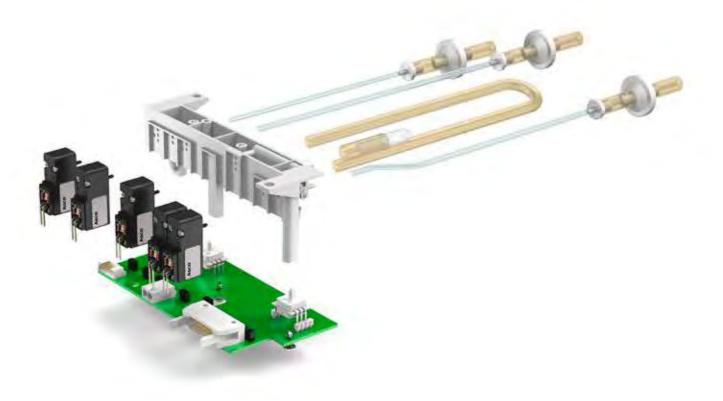
- Dental Delivery Systems
- Oxygen Therapy
- Patient Monitoring
- Therapeutic Support Surfaces
- Ventilators
- Hemodialysis
- Chemical Sterilizers
- Surgical Instruments





# **Analytical Technologies**

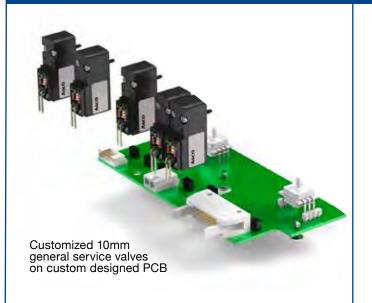
# Highest precision and functionality – especially suitable for aggressive fluids


Analytical technologies involve a scientific instrument used to analyze a chemical species or a patient sample. Typically, analytical applications require resistance to aggressive fluids, a low internal volume, and an easy-to-flush internal cavity to minimize cross-contamination. Power consumption of the miniature product line is also minimized to reduce heat transfer to expensive reagents and biological fluids.

The miniature valve product line is ideally suited for use in the following analytical applications:

- Clinical Chemistry
- Hematology
- Sample Preparation
- DNA Sequencing

- Immunoassay
- Chromatography
- Molecular Diagnostics
- Industrial Analyzers


# **Emerson's Solutions Approach: Rapid Engineered Solutions**

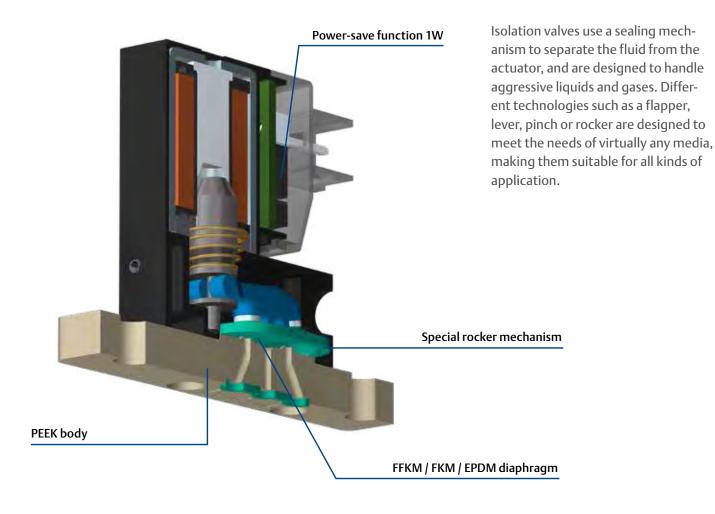


The Analytical and Medical marketplace is driven mainly by customization of products in order to meet varying customer instrumentation demands. The ability to quickly customize a valve product, or provide a solution, is increasingly demanded by OEM engineers. Instrumentation development times are being reduced, and as a result instrument complexity is being consolidated into modular components to accelerate speed-to-market.

Rapid Engineered Solutions are focused on miniature valve products that fulfill the needs of the analytical and medical instrument markets. Backed by the group's prototype labs, valves and assemblies are designed for quick and efficient manufacturing. Our local technical support teams provide the personal support you need during your development processes.

## **Customized Solutions**








## **Capabilities**

Our technical expertise and product customization capabilities enable fast turnaround on complex, high-performing fluidic systems. Our experts understand how to simplify your fluidic path designs, which in turn maximizes performance efficiencies and reduces your manufacturing and operating costs. From concept to production, we deliver your complete manifold assembly, including valves, electrical terminations, pins and housings – anything needed to create the right solution.

## **Fluid Isolation Valves**



## Diaphragm mechanism



- Diaphragm valves are known for their compact size, long service life and very low internal volume.
- The valve bodies are made of stainless steel or synthetic material (PTFE/PVDF).

Diaphragm valves ▶ p. 25

## Rocker mechanism



- Rocker mechanism valves are designed to reduce the pumping effect seen in some low-viscous fluid applications.
- Multiple standard body configurations and connection types allow these valves to be exceptionally versatile across numerous applications.

Rocker valves ▶ pp. 31, 43, 73

## ... for a wide variety of analytical and medical applications

## Flapper mechanism



- High pressures (up to 10 bar) are possible by the use of the special flapper mechanism and large orifice sizes.
- Holding power is lowered down to 1.5 watts, thus minimising the heat transfer into the fluid.

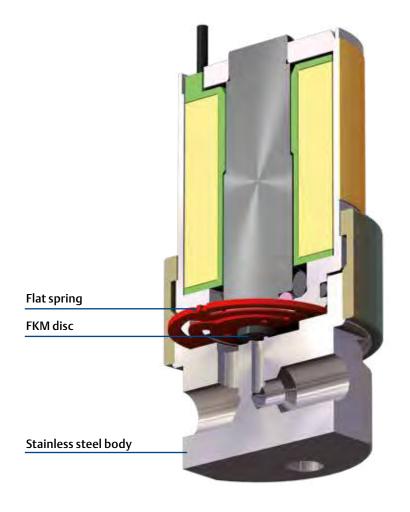
Flapper valves ▶ p. 35

## Lever mechanism



- Lever valves can be used at high differential pressures and large flow volumes.
- Lever valves are suitable for use at high ambient temperatures since the offset control mechanism provides optimal heat dissipation in the electromagnetic component.

Lever valves ▶ p. 57


## **Pinch mechanism**



- Characterized by their long service life, pinch valves offer exceptional versatility and reliability.
- Any risk of contamination is reliably avoided by changing the fluidic path tubing.

Pinch valves ▶ pp. 21, 49, 63

## **General Service Valves**



General service valves are used in handling inert gases in nearly any analytical or medical application, and are known for their long service life and reliability.

Their compact size and easy installation allow several valves to be mounted on a subbase or custom valve manifold.

## General service technologies ...

## **Miniature Solenoid Valves**

- Micro solenoid valves are used mainly as pilot valves or for the handling of inert gases.
- These series are suitable for applications in almost all areas of analytical and medical technology.
- Their compact size and easy installation allow several valves to be mounted on a subbase or custom valve module.

## ... for a wide variety of analytical and medical applications

9 - 11 mm



Series 188 ▶ p. 99

## 11 - 15 mm



Series RB ▶ p. 125

## 15 - 22 mm



Series S ▶ p. 131



Series 096 ▶ p. 89



Series 065 ▶ p. 77

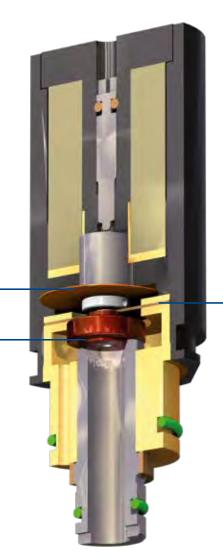


Series 411 ▶ p. 117



Series 226 ▶ p. 107

### >22 mm




Series L256 ▶ p. 121



Series L123 / L257 / L323 ▶ p. 91

# **Proportional Valves**



Proportional valves quickly and accurately adjust output pressure in relation to an electrical control signal. They are designed for applications with quickly changing flow demands and are highly customizable.

FKM diaphragm

Flat spring

FKM disc

## Proportional technologies ...

## **Preciflow**



- Series 202 2/2 proportional valves can be used in any Analytical & Medical application.
- Frictionless suspension of the core reduces hysteresis and provides stepless control in the lower and upper ranges.

Series 202, Preciflow ▶ p. 137

# Preciflow IPC



- Series 202 Preciflow IPC valves are Inlet Pressure Compensated flow control valves. Inlet Pressure Compensation allows high pressures and flows at low solenoid coil power consumption.
- Typical applications for these valves are in medical (e.g. respirators) and analytical apparatus (e.g. mass flow controllers).

Series 202, Preciflow IPC ▶ p. 143

## ... for a wide variety of analytical and medical applications

## **Piezotronic**



- Series 630 2/2 piezo valves for flow control are a high-tech solution designed in particular for applications requiring extremely low power consumption.
- They are suitable for use in battery-operated equipment or in potentially explosive areas.

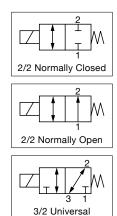
Series 630, Piezotronic ▶ p. 151

## Flapper Proportional



 This series 068 valve equipped with the flapper technology, one of the safest and most reliable solutions for media separation. It is combined with the advantages of the Proportional technology to ensure optimum flexibility to control of liquid media.

Series 068, Flapper Proportional ▶ p. 135

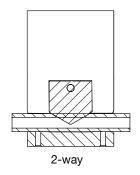

# **Data Sheets – Table of Contents**

| Fluid Isolation Valves                      |     |
|---------------------------------------------|-----|
| Series 045                                  | 21  |
| Series 055                                  | 25  |
| Series 058                                  | 29  |
| Series 067                                  | 31  |
| Series 068                                  | 35  |
| Series 110                                  | 43  |
| Series S170 / S370                          | 49  |
| Series 283 / 383                            | 57  |
| Series 284                                  | 63  |
| Series 384                                  | 69  |
| Series 385                                  | 73  |
| General Service Valves                      |     |
| Series 065                                  | 77  |
| Series 076                                  | 81  |
| Series 090                                  |     |
| Series 096                                  | 89  |
| Series L123 / L257 / L323                   | 91  |
| Series 188                                  | 99  |
| Series 226                                  | 107 |
| Series 411                                  | 117 |
| Series L256                                 | 121 |
| Series RB                                   | 125 |
| Series S                                    | 131 |
|                                             |     |
| Proportional Valves                         |     |
| Series 068 Flapper Proportional             | 135 |
| Series 202 Preciflow 12.7mm                 | 137 |
| Series 202 Preciflow 15mm                   | 139 |
| Series 202 Preciflow IPC und Preciflow 19mm | 143 |
| Series 614 Sentronic Plus IPC               | 147 |
| Series 630 Piezotronic                      | 151 |
|                                             |     |
| Manifolds & Accessories                     |     |
| Series 252                                  | 153 |
| Series 624                                  | 157 |
| Series 881 Connectors                       | 159 |
| Series 908 Electronic Control Unit          | 165 |
| Pinch Valve Tubing & Guide                  | 167 |
| Engineering Information                     |     |
| Solenoid Valves – Information & Terminology | 169 |
| Chemical Resistance Guide                   | 173 |
| Conversion Tables                           | 177 |

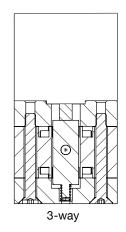


## PINCH VALVES, COMPACT 2-WAY / 3-WAY SOLENOID

- The 045 Series are compact 2-way and 3-way solenoid pinch valves designed for use with highly aggressive or highpurity liquids in analytical and medical instrumentation, and industrial applications
- Hermetic separation of control mechanism and the fluid within the tubing prevents particulate contamination caused by friction of moving parts, assuring maximum purity of liquids
- Available in a range of body sizes to accommodate a wide variety of tubing sizes
- Meets all relevant CE directives, and is RoHS compliant
- Typical applications include:
  - Hemodialysis
  - Bioinstrumentation
  - Surgical Fluid Management
  - Pharmaceutical

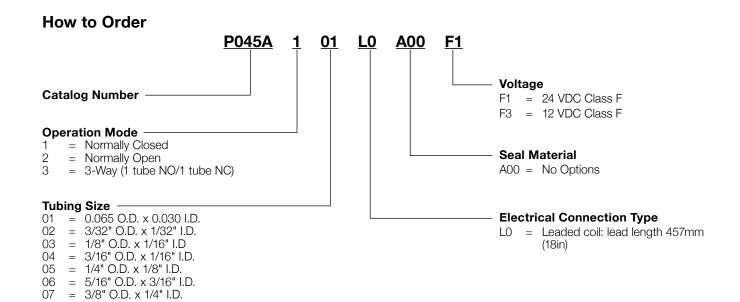






| Fluids*                                 | Temperature Range           |  |
|-----------------------------------------|-----------------------------|--|
| Air, Inert Gases, Water, Oil or Liquids | 0°C to 70°C (32°F to 158°F) |  |

<sup>\*</sup> Ensure that the compatibility of the materials in contact with the fluids is verified.

| Materials in Contact with Fluid |                                                               |  |  |  |  |  |
|---------------------------------|---------------------------------------------------------------|--|--|--|--|--|
| Recommended Tubing              | Recommended Tubing VMQ (silicone) (max. hardness: 50 Shore A) |  |  |  |  |  |
| Other Materials                 |                                                               |  |  |  |  |  |
| Body                            | Aluminum                                                      |  |  |  |  |  |
| Pinch Mechanism                 | POM, Aluminum                                                 |  |  |  |  |  |
| Internal Parts                  | Stainless Steel                                               |  |  |  |  |  |
| Response Time                   | 5 to 25ms                                                     |  |  |  |  |  |




| Electrical Characteristics      |                                                             |  |  |  |  |  |
|---------------------------------|-------------------------------------------------------------|--|--|--|--|--|
| Coil Insulation Class           | F                                                           |  |  |  |  |  |
| Connector                       | 22 AWG or 24 AWG Lead wires, 457mm (18in) long, PTFE coated |  |  |  |  |  |
| Electrical Safety               | IEC 335                                                     |  |  |  |  |  |
| Electrical Enclosure Protection | IP64                                                        |  |  |  |  |  |
| Standard Voltages               | 12 VDC, 24 VDC                                              |  |  |  |  |  |
| Power Consumption               | 1.0 to 7.2 Watts                                            |  |  |  |  |  |



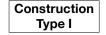
| Specifications |               |                              |           |              |             |  |  |
|----------------|---------------|------------------------------|-----------|--------------|-------------|--|--|
| Tube O.D.      | Tube I.D.     | Operating Pressure bar (psi) |           | Power Rating | Tubing Size |  |  |
| mm (inches)    | mm (inches)   | min.                         | max.      | W            |             |  |  |
| 1.65 (0.065)   | 0.762 (0.030) | 0                            | 2.07 (30) | 1            | 01          |  |  |
| 2.38 (3/32)    | 0.794 (1/32)  | 0                            | 2.07 (30) | 1.5          | 02          |  |  |
| 3.17 (1/8)     | 1.59 (1/16)   | 0                            | 2.07 (30) | 1.5          | 03          |  |  |
| 4.76 (3/16)    | 1.59 (1/16)   | 0                            | 2.07 (30) | 4.2          | 04          |  |  |
| 6.35 (1/4)     | 3.17 (1/8)    | 0                            | 1.38 (20) | 4.2          | 05          |  |  |
| 7.94 (5/16)    | 4.76 (3/16)   | 0                            | 1.38 (20) | 7.2          | 06          |  |  |
| 9.52 (3/8)     | 6.35 (1/4)    | 0                            | 1.38 (20) | 7.2          | 07          |  |  |

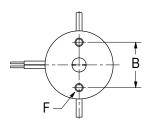
PINCH VALVES, COMPACT 2-WAY / 3-WAY SOLENOID



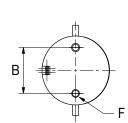
## **Options**

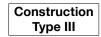
 Contact us for information regarding the usage of different tubing other than those recommended

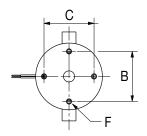

#### Installation


- The solenoid valves can be mounted in any position without affecting operation, however, for optimum performance it is recommended that they be fitted with the solenoid operator at the top.
- In case the tubing is not placed in its seat, the solenoid valve could operate incorrectly.
- 305mm (12in) Flexible tubing is pre-installed with each valve.

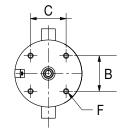
PINCH VALVES, COMPACT 2-WAY / 3-WAY SOLENOID

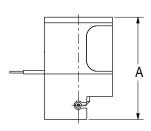

### Dimensions: mm (inches)

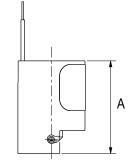

## 2-Way Solenoid

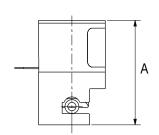


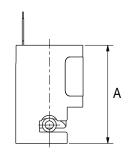


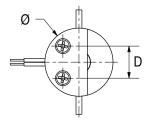


Construction Type II

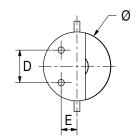


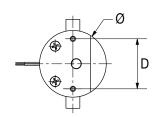



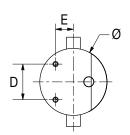



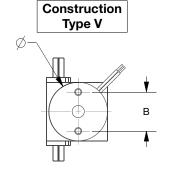



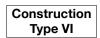


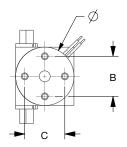




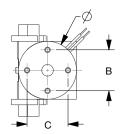


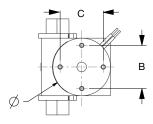


| Config-<br>uration | Construction<br>Type | Tubing Size | Ø             | Α             | В             | С             | D             | E             | F     |
|--------------------|----------------------|-------------|---------------|---------------|---------------|---------------|---------------|---------------|-------|
| NO                 | I                    | 01          | 10.05 (0.750) | 28.58 (1.125) | 12.70 (0.500) | -             | -             | -             | #0 F6 |
| NC                 | II                   | 01          | 19.05 (0.750) | 25.45 (1.002) | 12.70 (0.500) | -             | 8.99 (0.354)  | 4.50 (0.177)  | #2-56 |
| NO                 | III                  | 02 / 03     | 05.40 (4.000) | 37.25 (1.467) | 17.45 (0.687) | 17.45 (0.687) | 17.45 (0.687) | -             | #4 40 |
| NC                 | IV                   | 02 / 03     | 25.40 (1.000) | 37.12 (1.462) | 12.34 (0.486) | 12.34 (0.486) | 12.34 (0.486) | 6.17 (0.243)  | #4-40 |
| NO                 | III                  | 04 / 05     | 01 75 (1 050) | 50.79 (2.000) | 22.45 (0.884) | 22.45 (0.884) | 22.45 (0.884) | -             | #4 40 |
| NC                 | IV                   | 04 / 05     | 31.75 (1.250) | 46.91 (1.847) | 15.90 (0.626) | 15.90 (0.626) | 15.90 (0.626) | 7.95 (0.313)  | #4-40 |
| NO                 | III                  | 06 / 07     | 20 10 (1 500) | 59.68 (2.350) | 28.58 (1.125) | 28.58 (1.125) | 28.58 (1.125) | -             | #4 40 |
| NC                 | IV                   | 06 / 07     | 38.10 (1.500) | 55.80 (2.197) | 20.22 (0.796) | 20.22 (0.796) | 20.22 (0.796) | 10.11 (0.398) | #4-40 |

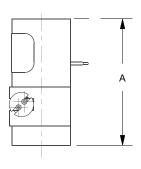

PINCH VALVES, COMPACT 2-WAY / 3-WAY SOLENOID

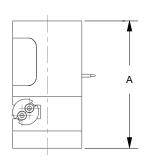
### Dimensions: mm (inches)

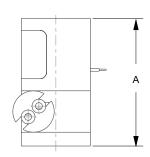

### 3-Way Solenoid

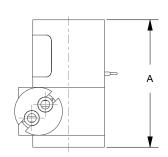


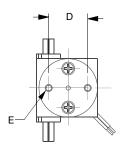


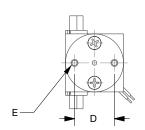



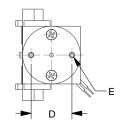


Construction Type VII

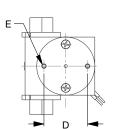




Construction Type VIII



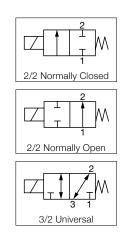










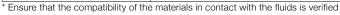


| Construction<br>Type | Tubing Size | Ø             | Α                           | В             | С             | D             | E             |               |       |
|----------------------|-------------|---------------|-----------------------------|---------------|---------------|---------------|---------------|---------------|-------|
| V                    | 01          | 19.05 (0.750) | 41.28 (1.625)               | 12.70 (0.500) | -             | 12.70 (0.500) | #2-56         |               |       |
| VI                   | 02          | 25.40 (1.000) | 0) 46.77 (1.842)            | 17.45 (0.687) | 17.40 (0.687) | 17.45 (0.687) | #4-40         |               |       |
| VI                   | 03          | 25.40 (1.000) |                             |               |               |               |               |               |       |
| VII                  | 04          | 31.75 (1.250) | 31.75 (1.250) 58.74 (2.313) | 01.75 (1.050) | E0 74 (0 010) | 22.45 (0.884) | 22.45 (0.884) | 00.45 (0.004) | #4-40 |
| VII                  | 05          |               |                             | 22.45 (0.884) | 22.45 (0.884) | 22.45 (0.884) | #4-40         |               |       |
| VIII                 | 06          | 38.1 (1.500)  | 67.63 (2.663)               | 28.58 (1.125) | 28.58 (1.125) | 28.58 (1.125) | #4-40         |               |       |

# SERIES 055

## **ASCO™ MINIATURE SOLENOID VALVES**

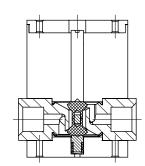
### PTFE DIAPHRAGM FLUID ISOLATION VALVES

- PTFE isolation valves are designed for use with highly aggressive liquids
- The PTFE body and diaphragm isolates the internal solenoid components from the media
- Excellent self-draining capability and easy-to-flush low-volume internal cavity
- Compact architecture make them ideal for analytical benchtop instrumentation
- Available in 2-Way normally closed, 2-Way normally open, and 3-Way universal; comes with #10-32, 1/4-28, or 1/8 NPSC in-line porting for exceptional versatility
- Meets all relevant CE directives
- Typical applications include:
  - Chromatography
  - Solvent Selection/Diversion
  - Sample Preparation
  - DNA Sequencing

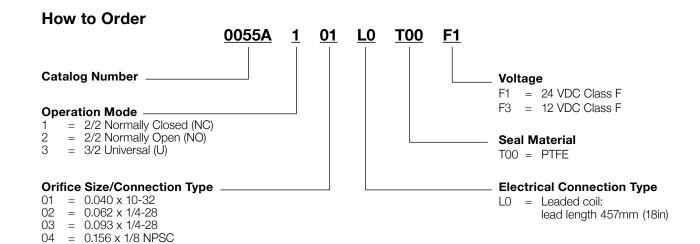





| Fluids*            | Temperature Range           | Seal Materials* |  |
|--------------------|-----------------------------|-----------------|--|
| Aggressive liquids | 0°C to 70°C (32°F to 158°F) | PTFE            |  |


<sup>\*</sup>Ensure that the compatibility of the materials in contact with the fluids is verified

| General Valve Information* |                        |  |  |  |
|----------------------------|------------------------|--|--|--|
| Body                       | PTFE / Stainless steel |  |  |  |
| Poppet                     | PTFE                   |  |  |  |
| Diaphragm                  | PTFE                   |  |  |  |
| Response Time              | < 20ms                 |  |  |  |
| Internal Volume            | As low as 18 µl        |  |  |  |




| Electrical Characteristics |                                                             |  |  |  |  |
|----------------------------|-------------------------------------------------------------|--|--|--|--|
| Coil Insulation Class      | F                                                           |  |  |  |  |
| Connector                  | 22 AWG or 24 AWG Lead wires, 457mm (18in) long, PTFE coated |  |  |  |  |
| Standard Voltages          | 12 VDC, 24 VDC                                              |  |  |  |  |
| Power Consumption          | 1.0 to 7.2 Watts                                            |  |  |  |  |

| Specifications |              |           |           |                  |               |               |  |  |  |  |
|----------------|--------------|-----------|-----------|------------------|---------------|---------------|--|--|--|--|
| 0              | Orifice Size | Flow Co   | efficient | Operating<br>bar | Power         |               |  |  |  |  |
| Connection     |              |           |           | min.             | max.          | Rating<br>(W) |  |  |  |  |
|                | mm (inches)  | Kv (m³/h) | Cv        | 111111.          | gas / liquids | (**)          |  |  |  |  |
| #10-32         | 1.02 (0.040) | 0.010     | 0.012     | -0.9 (-13)       | 2.07 (30)     | 1             |  |  |  |  |
| 1/4-28         | 1.57 (0.062) | 0.023     | 0.027     | -0.9 (-13)       | 2.07 (30)     | 1.5           |  |  |  |  |
| 1/4-28         | 2.36 (0.093) | 0.050     | 0.058     | -0.9 (-13)       | 2.07 (30)     | 4.2           |  |  |  |  |
| 1/8 NPSC       | 3.96 (0.156) | 0.186     | 0.215     | -0.9 (-13)       | 2.07 (30)     | 7.2           |  |  |  |  |



PTFE DIAPHRAGM FLUID ISOLATION VALVES

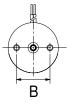


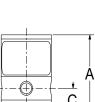
## **SERIES** 055

## **ASCO™ MINIATURE SOLENOID VALVES**

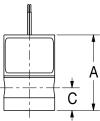
PTFE DIAPHRAGM FLUID ISOLATION VALVES

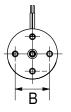
### **Dimensions: mm (inches)**

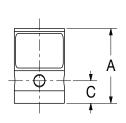

Type 01


Type 02

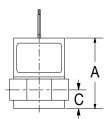
Type 03

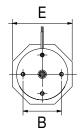

Type 04

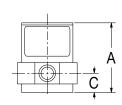

Type 05

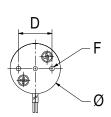


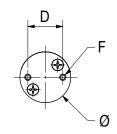


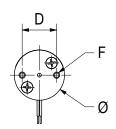



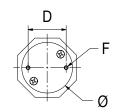



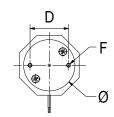














| Configuration | Туре | Catalog Number  | ø             | A             | В             | С             | D             | E             | F     |
|---------------|------|-----------------|---------------|---------------|---------------|---------------|---------------|---------------|-------|
| 01            |      | 0055A101L0T00xx | 19.05 (0.750) | 29.34 (1.155) | 12.70 (0.500) | 9.220 (0.363) | 12.70 (0.500) | -             | #2-56 |
| 2-Way NC 04   | 02   | 0055A102L0T00xx | 25.40 (1.000) | 37.78 (1.488) | 12.34 (0.486) | 11.43 (0.450) | 17.45 (0.687) | -             |       |
|               | 04   | 0055A103L0T00xx | 31.75 (1.250) | 47.32 (1.863) | 15.90 (0.626) | 12.70 (0.500) | 22.45 (0.884) | 38.10 (1.500) | #4-40 |
|               | 04   | 0055A104L0T00xx | 38.10 (1.500) | 53.04 (2.088) | 20.22 (0.796) | 14.27 (0.562) | 28.58 (1.125) | 44.45 (1.750) |       |
|               | 01   | 0055A201L0T00xx | 19.05 (0.750) | 29.54 (1.163) | 12.70 (0.500) | 9.220 (0.363) | 12.70 (0.500) | -             | #2-56 |
|               | 03   | 0055A202L0T00xx | 25.40 (1.000) | 37.91 (1.493) | 17.45 (0.687) | 11.43 (0.450) | 17.45 (0.687) | -             |       |
| 2-Way NO      | 05   | 0055A203L0T00xx | 31.75 (1.250) | 46.06 (1.814) | 22.45 (0.884) | 12.70 (0.500) | 22.45 (0.884) | 38.10 (1.500) | #4-40 |
|               | 05   | 0055A204L0T00xx | 38.10 (1.500) | 51.78 (2.039) | 28.58 (1.125) | 14.27 (0.562) | 28.58 (1.125) | 44.45 (1.750) |       |
|               | 01   | 0055A301L0T00xx | 19.05 (0.750) | 29.49 (1.161) | 12.70 (0.500) | 9.220 (0.363) | 12.70 (0.500) | -             | #2-56 |
| 0.14/2        | 03   | 0055A302L0T00xx | 25.40 (1.000) | 37.88 (1.492) | 17.45 (0.687) | 11.42 (0.450) | 17.45 (0.687) | -             |       |
| 3-Way         | 05   | 0055A303L0T00xx | 31.75 (1.250) | 46.06 (1.814) | 22.45 (0.884) | 12.70 (0.500) | 22.45 (0.884) | 38.10 (1.500) | #4-40 |
|               | 05   | 0055A304L0T00xx | 38.10 (1.500) | 51.75 (2.038) | 28.58 (1.125) | 14.27 (0.562) | 28.58 (1.125) | 44.45 (1.750) |       |



### DIAPHRAGM COMPACT 2-WAY SOLENOID ISOLATION VALVE

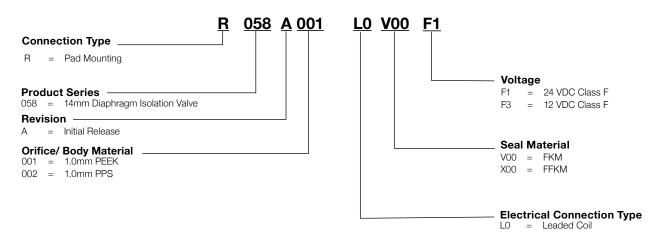
- Direct acting solenoid valve for use with neutral or aggressive liquids in analytical instruments
- Media separating soft-seal PTFE diaphragm, prevents any potential leakage of critical reagents within the instrument compartment
- Low power consumption results in less heat transfer to thermally sensitive reagents and samples
- Small form-factor saves space in OEM instruments and is well-suited for portable and hand-held field devices
- Typical application include:
  - Clinical Diagnostics
  - DNA Sequencing
  - Liquid Chromatography
  - Sample Preparation



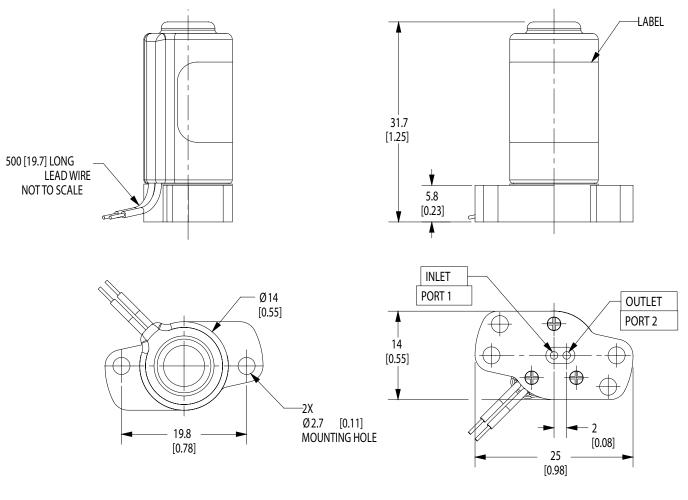
| Fluids*          | Temperature Range           | Seal Materials* |  |  |
|------------------|-----------------------------|-----------------|--|--|
| Liquids or Gases | 0°C to 40°C (32°F to 104°F) | FKM, FFKM       |  |  |

<sup>\*</sup> Ensure that the compatibility of the materials in contact with the fluids is verified.

| General Valve Information |                             |  |  |  |
|---------------------------|-----------------------------|--|--|--|
| Body                      | PPS, PEEK                   |  |  |  |
| Diaphragm                 | PTFE                        |  |  |  |
| Response Time             | < 10ms                      |  |  |  |
| Internal Volume           | 29µl                        |  |  |  |
| Max Viscosity             | 20 cSt (mm <sup>2</sup> /s) |  |  |  |

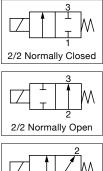

| <b>Electrical Characteristics</b> |                      |
|-----------------------------------|----------------------|
| Coil Insulation Class             | F                    |
| Connector                         | Lead Wires           |
| Connector Specification           | 28 AWG PTFE coated   |
| ·                                 |                      |
| Electrical Safety                 | IEC 335              |
| Electrical Enclosure Protection   | IP65 (EN 60529)      |
| Standard Voltages*                | 12 VDC, 24 VDC (±5%) |

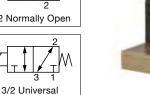
| Electrical |        | Power I | Ratings |          | Ambient Temperature |
|------------|--------|---------|---------|----------|---------------------|
| Connection | Inrush | Holding |         | Hot/Cold | Range               |
|            | VA     | VA W    |         | W        | C° (F°)             |
| LO         | -      | -       | -       | 2.8      | 0 to 40 (32 to 104) |


| Specifications |                             |                        |           |                     |                  |              |                 |  |  |  |
|----------------|-----------------------------|------------------------|-----------|---------------------|------------------|--------------|-----------------|--|--|--|
|                | Orifice Size Flow Coefficie |                        | efficient |                     |                  |              |                 |  |  |  |
| Connection     |                             |                        |           | min.                | max.             | Power Rating | Catalog Number  |  |  |  |
|                | mm (inches)                 | Kv (m <sup>3</sup> /h) | Cv        |                     | gas / liquids    | (W)          | Catalog Hamber  |  |  |  |
| 2/2 NC - Norma | ally Closed                 |                        |           |                     |                  |              |                 |  |  |  |
| Pad Mounting   | 1.00 (0.04)                 | 0.018                  | 0.021     | -0.2 bar (-2.9 psi) | 2.0 bar (29 psi) | 2.8          | R058A001L0XXXXX |  |  |  |
| Pad Mounting   | 1.00 (0.04)                 | 0.018                  | 0.021     | -0.2 bar (-2.9 psi) | 2.0 bar (29 psi) | 2.8          | R058A002L0XXXXX |  |  |  |

DIAPHRAGM COMPACT 2-WAY SOLENOID ISOLATION VALVE

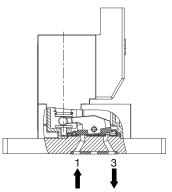
## **How to Order**



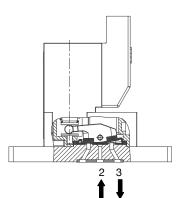


#### Dimensions: mm (inches)



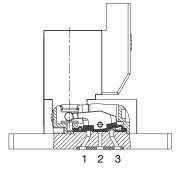
#### **ROCKER SOLENOID FLUID ISOLATION VALVES**


- Rocker isolation valves are designed for use with neutral or highly aggressive liquids in analytical instrumentation
- Special rocker mechanism, combined with a separating diaphragm, prevents heat transfer to the fluid and eliminates the sticking effect of the valve seat
- Hermetic separation of control mechanism prevents particulate contamination caused by friction of moving parts, assuring maximum purity of liquid samples
- Excellent self-draining capability and easy-to-flush low-volume internal cavity make these valves ideal in applications where cross-contamination must be minimized
- "Hit and Hold" feature utilizes an integrated power-save switch that reduces analytical instrument power consumption
- · Meets all relevant CE directives, and is RoHS compliant
- Typical applications include:
  - Pipette Dispensing
  - In-vitro Diagnostics
  - DNA Sequencing
  - Surgical Fluid Management









### **Functional Principle**







Function 2/2 NO



Function 3/2 U

# Fluids\* Temperature Range Seal Materials\* Liquids or Gases 10 °C to 40 °C (50 °F to 104 °F) FKM/FFKM 5 °C to 40 °C (41 °F to 104 °F) EPDM

<sup>\*</sup>Ensure that the compatibility of the materials in contact with the fluids is verified.

| General Valve Information |                             |  |  |  |
|---------------------------|-----------------------------|--|--|--|
| Body                      | PEEK                        |  |  |  |
| Others                    | Stainless Steel             |  |  |  |
| Response Time             | < 10ms                      |  |  |  |
| Internal Volume           | 10μΙ                        |  |  |  |
| Max. Viscosity            | 20 cSt (mm <sup>2</sup> /s) |  |  |  |

| Electrical Characteristics      |                            |  |  |  |  |
|---------------------------------|----------------------------|--|--|--|--|
| Coil Insulation Class           | F                          |  |  |  |  |
| Connector                       | Pin Header with 2 Contacts |  |  |  |  |
| Electrical Safety               | EN 60335                   |  |  |  |  |
| Electrical Enclosure Protection | IP65 (EN 60529)            |  |  |  |  |
| Standard Voltages*              | 12 VDC, 24 VDC (-5%/+10%)  |  |  |  |  |

<sup>\*</sup> Other voltages on request

| Coil<br>Type1 | Power<br>Rating<br>Inrush/<br>Holding | Ambient<br>Temperature<br>Range | Protection | Electrical Connection                                                                                                 |  |
|---------------|---------------------------------------|---------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------|--|
|               | w                                     | °C (°F)                         | VA         |                                                                                                                       |  |
| Specific      | 2.5/1.0*                              | 10 to 50<br>(50 to 122)         | IP40       | Connector with two 0.5mm² lead wires<br>+ built-in LED and electrical protection<br>or lead wires, 0.5m (19.7in) long |  |

<sup>\*</sup> With power-save electronics

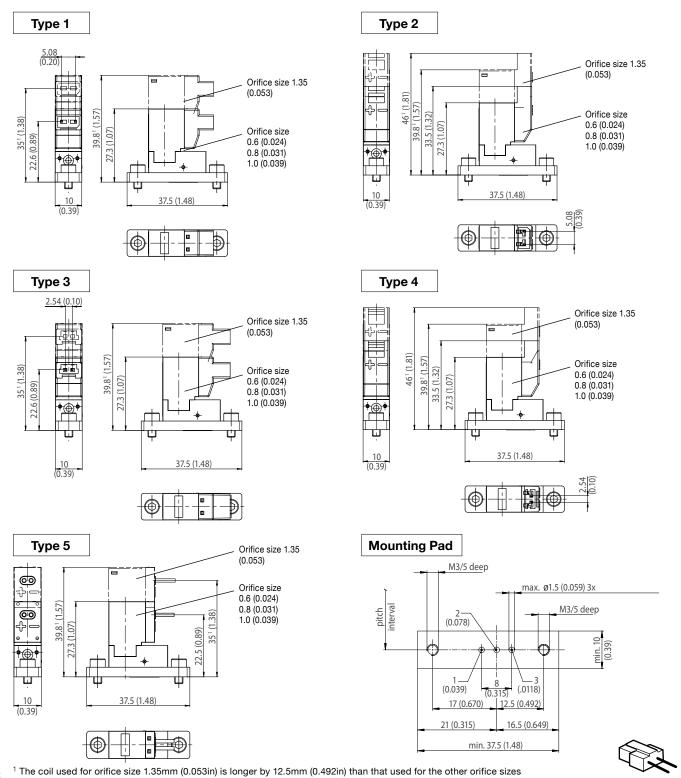
<sup>&</sup>lt;sup>1</sup> The coil used for orifice size 1.35mm (0.053in) is longer by 12.5mm (0.49in) than that used for the other orifice sizes, see drawings on following pages

ROCKER SOLENOID FLUID ISOLATION VALVES

|                          | Orifica         | FI                     |       | Operation | ng Pressure   | e bar (psi) |                      |                              | Seal M       | laterial2 |   |
|--------------------------|-----------------|------------------------|-------|-----------|---------------|-------------|----------------------|------------------------------|--------------|-----------|---|
|                          | Orifice<br>Size | Flo<br>Coeffi          |       | Орстан    | Ť             | ax.         | Electrical           | Catalog Number               | Ccarii       |           |   |
| Connection               | mm              | Kv (m <sup>3</sup> /h) | Cv    | min.      | gases         | liquids     | Connection/<br>Type* |                              | FKM          | EPDM      |   |
| 2/0 NC Name alle         | (inches)        | , ,                    |       |           | •             |             |                      |                              |              |           |   |
| 2/2 NC - Normally (      | Ciosea          | т т                    |       |           | T             |             | 1 1                  | SC S067A 021                 |              | Т         |   |
|                          |                 |                        |       |           |               |             | 2                    | SC S067A 022                 | 1            |           |   |
|                          | 0.6             | 0.006                  | 0.007 | -0.9      | 3 (40.5)      | 3 (40.5)    | 3                    | SC S067A 023                 | V            | E         |   |
|                          | (0.024)         |                        |       | (-13)     | (43.5)        | (43.5)      | 4                    | SC S067A 024                 | 1            |           |   |
|                          |                 |                        |       |           |               |             | 5                    | L S067A 025                  |              |           |   |
|                          |                 |                        |       |           |               |             | 1                    | SC S067A 026                 |              |           |   |
|                          | 0.8             |                        |       | -0.9      | 2             | 2           | 2                    | SC S067A 027                 |              |           |   |
|                          | (0.031)         | 0.010                  | 0.012 | (-13)     | (29.0)        | (29.0)      | 3                    | SC S067A 028                 | V            | E         |   |
| Long Flange <sup>1</sup> | , ,             |                        |       | , ,       | ` ′           | , ,         | 5                    | SC S067A 029<br>L S067A 030  | -            |           |   |
|                          |                 | +                      |       |           |               |             | 1                    | SC S067A 030                 |              |           |   |
|                          |                 |                        |       |           |               |             | 2                    | SC S067A 031                 | -            |           |   |
|                          | 1.0             | 0.017                  | 0.020 | -0.9      | 1.5           | 1.5         | 3                    | SC S067A 033                 | + v          | E         |   |
|                          | (0.040)         |                        |       | (-13)     | (21.8)        | (21.8)      | 4                    | SC S067A 034                 | 1            | _         |   |
|                          |                 |                        |       |           |               |             | 5                    | L S067A 035                  | 1            |           |   |
|                          |                 |                        |       |           |               |             | 1                    | SC S067A 036                 |              |           |   |
|                          | 1.35            |                        |       | -0.9      | 1.0           | 1.0         | 2                    | SC S067A 037                 |              |           |   |
|                          | (0.053)         | 0.026                  | 0.030 | (-13)     | (14.5)        | (14.5)      |                      | 3                            | SC S067A 038 | V         | E |
|                          | (0.000)         |                        |       | (10)      | (14.0)        | (14.0)      | 4                    | SC S067A 039                 |              |           |   |
| 2/2.1/2. 11              |                 |                        |       |           |               |             | 5                    | L S067A 040                  |              |           |   |
| 2/2 NO - Normally        | Open            |                        |       |           |               |             | 1 1                  | SC S067A 061                 |              |           |   |
|                          |                 |                        |       |           |               |             | 2                    | SC S067A 061                 | -            |           |   |
|                          | 0.6             | 0.006                  | 0.007 | -0.9      | 3             | 3           | 3                    | SC S067A 063                 | V            | E         |   |
|                          | (0.024)         |                        |       | (-13)     | (43.5)        | (43.5)      | 4                    | SC S067A 064                 | <b>⊣</b> '   |           |   |
|                          |                 |                        |       |           |               |             | 5                    | L S067A 065                  | 1            |           |   |
|                          |                 |                        |       |           |               |             | 1                    | SC S067A 066                 |              |           |   |
|                          | 0.8             |                        | 0.012 | -0.9      | 2 (29.0)      | 2 (29.0)    | 2                    | SC S067A 067                 | V            | Е         |   |
|                          | (0.031)         |                        |       | (-13)     |               |             | 3                    | SC S067A 068                 |              |           |   |
|                          | (0.001)         |                        |       |           |               |             | 4                    | SC S067A 069                 |              |           |   |
| Long Flange1             |                 |                        |       |           |               |             | 5                    | L S067A 070<br>SC S067A 071  |              |           |   |
|                          |                 |                        |       |           |               |             | 2                    | SC S067A 071                 |              |           |   |
|                          | 1.0             | 0.017                  | 0.020 | -0.9      | 1.5<br>(21.8) | 1.5         | 3                    | SC S067A 073                 |              | E         |   |
|                          | (0.040)         | 0.017                  | 0.020 | (-13)     |               | (21.8)      | 4                    | SC S067A 074                 | <b>⊣</b>     |           |   |
|                          |                 |                        |       |           |               |             | 5                    | L S067A 075                  | 1            |           |   |
|                          |                 |                        |       |           |               |             | 1                    | SC S067A 076                 |              |           |   |
|                          | 1.35            |                        | 0.030 | -0.9      | 1.0           | 1.0         | 2                    | SC S067A 077                 | ]            |           |   |
|                          | (0.053)         | 0.026                  |       | 030 (-13) | (14.5)        | (14.5)      | 3                    | SC S067A 078                 | V            | E         |   |
|                          | (,              |                        |       |           |               |             | 4                    | SC S067A 079                 |              |           |   |
| 3/2 U-Universal          |                 |                        |       |           |               |             | 5                    | L S067A 080                  |              |           |   |
| " L U-UIIIVEI Sal        |                 |                        |       |           | T             |             | 1 1                  | SC S067A 101                 |              | T         |   |
|                          |                 |                        |       | 6.0       |               |             | 2                    | SC S067A 102                 | †            |           |   |
|                          | 0.6             | 0.006                  | 0.007 | -0.9      | 3 (40.5)      | 3           | 3                    | SC S067A 103                 | V            | E         |   |
|                          | (0.024)         |                        |       | (-13)     | (43.5)        | (43.5)      | 4                    | SC S067A 104                 | ]            |           |   |
|                          |                 |                        |       |           |               |             | 5                    | L S067A 105                  |              |           |   |
|                          |                 |                        |       |           |               |             | 1                    | SC S067A 106                 | 4            |           |   |
|                          | 0.8             | 0.040                  | 0.040 | -0.9      | 2             | 2           | 2                    | SC S067A 107                 | ,            | _         |   |
|                          | (0.031)         | 0.010                  | 0.012 | (-13)     | (29.0)        | (29.0)      | 3 4                  | SC S067A 108<br>SC S067A 109 | V            | E         |   |
| Long Flange1             |                 |                        |       |           |               |             | 5                    | L S067A 109                  | +            |           |   |
|                          |                 |                        |       |           |               |             | 1                    | SC S067A 111                 |              |           |   |
|                          |                 |                        |       | 6.0       | 1             |             | 2                    | SC S067A 112                 | 1            |           |   |
|                          | 1.0             | 0.017                  | 0.020 | -0.9      | 1.5           | 1.5         | 3                    | SC S067A 113                 | V            | E         |   |
|                          | (0.040)         |                        |       | (-13)     | (21.8)        | (21.8)      | 4                    | SC S067A 114                 |              |           |   |
|                          |                 |                        |       |           |               |             | 5                    | L S067A 115                  |              |           |   |
|                          |                 | 1                      |       |           |               |             | 1                    | SC S067A 116                 | _            |           |   |
|                          | 1.35            | 0.555                  | 0.0   | -0.9      | 1.0           | 1.0         | 2                    | SC S067A 117                 |              |           |   |
|                          | (0.053)         | 0.026                  | 0.030 | (-13)     | (14.5)        | (14.5)      | 3                    | SC S067A 118                 | V            | E         |   |
|                          |                 |                        |       | ` '/      |               | ` -′        | 5                    | SC S067A 119<br>L S067A 120  | 4            |           |   |

<sup>\*</sup> Types 1 to 5 with power-save electronics, LED and electrical protection, mm (inches)

1 = width: 5.08 (0.2) 2 = width: 5.08 (0.2) 3 = width: 2.54 (0.1)


4 = width: 2.54 (0.1) 5 = Flying Leads, 0.5 (19.7) long (see drawings on following page)



 <sup>1 2</sup> hexagon socket head cap mounting screws M3x6mm (0.24in), stainless steel, ISO4762 supplied
 2 To order FFKM seals, leave the corresponding designation in the catalog number "blank".

#### **ROCKER SOLENOID FLUID ISOLATION VALVES**

#### **Dimensions: mm (inches)**



EMERSON.

88118806

88118807

88118808

Catalog number:

Catalog number:

Catalog number:

0.5m (19.7in) long

1.5m (59in) long

3m (118in) long

88118802

NOTE: Connectors must be ordered separately, please specify the quantity and Catalog numbers required: Pin spacing 5.08 (0.20) 0.5m (19.7in) long Catalog number: **88118801** Pin spacing 2.54 (0.10) 0

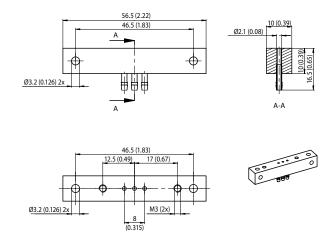
Catalog number:

Catalog number:

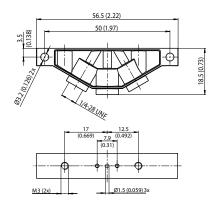
1.5m (59in) long

3m (118in) long

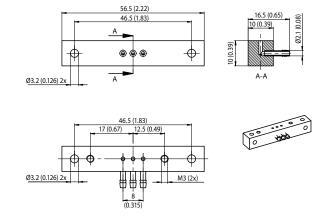
**ROCKER SOLENOID FLUID ISOLATION VALVES** 


#### Dimensions: mm (inches)

# Single Subbases PEEK


#### UNF thread -Catalog number 36100038




## Bottom push-in hose connection - Catalog number 36100042



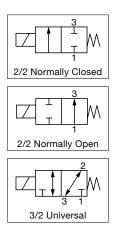
#### UNF thread -Catalog number 36100040



## Side push-in hose connection - Catalog number 36100044

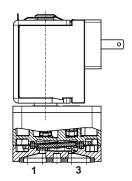


## **Options**

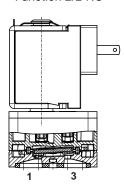

- Subbases available on request
- Manual operator (impulse-type)

#### Installation

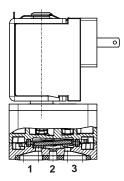
• The solenoid valves can be mounted in any position without affecting operation


FLAPPER FLUID ISOLATION VALVES, 16mm

- Flapper isolation valves are designed for use with neutral or highly aggressive liquids in analytical and medical systems
- Special Flapper mechanism results in no pumping or sticking effects
- Reduced heat transfer between control mechanism and fluid make them ideal for use with heat-sensitive reagents and biological samples
- Hermetic separation of control mechanism prevents particulate contamination caused by friction of moving parts, assuring maximum purity of liquid samples
- Excellent self-draining capability and easy-to-flush lowvolume internal cavity make these valves ideal in application where cross-contamination must be minimized
- · Meets all relevant CE directives, and is RoHS compliant
- Typical applications include:
  - In-vitro Diagnostics
  - Hematology
  - DNA Sequencing
  - Industrial Liquid Analyzers







#### **Functional Principle**



Function 2/2 NC



Function 2/2 NO



Function 3/2 U

| Fluids*                       | Temperature Range                  | Seal Materials* |
|-------------------------------|------------------------------------|-----------------|
|                               |                                    | FFKM            |
| Liquids or Gases <sup>1</sup> | 5 °C to 50 °C<br>(41 °F to 122 °F) | FKM             |
|                               | (41 1 10 122 1)                    | EPDM            |

<sup>&</sup>lt;sup>1</sup> Filtration: 50µm

<sup>\*</sup> Ensure that the compatibility of the materials in contact with the fluids is verified

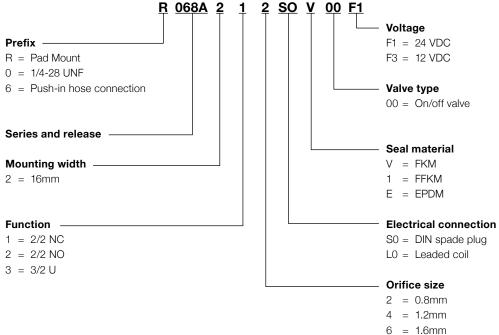
| General Valve Information |                 |  |  |
|---------------------------|-----------------|--|--|
| Body                      | PEEK            |  |  |
| Others                    | Stainless Steel |  |  |
| Response Time             | < 20ms          |  |  |
| Internal Volume           | 75µІ            |  |  |
| Max. Viscosity            | 20 cSt (mm²/s)  |  |  |

| Electrical Characteristics         |                                                                             |  |  |  |
|------------------------------------|-----------------------------------------------------------------------------|--|--|--|
| Coil Insulation Class              | F                                                                           |  |  |  |
| Connector                          | Spade terminals or lead wires <sup>2</sup>                                  |  |  |  |
| Connector Specification            | Spade terminals:<br>DIN 46340, lead wires: 24 AWG                           |  |  |  |
| Electrical Safety                  | IEC 335                                                                     |  |  |  |
| Electrical Enclosure<br>Protection | Molded IP65 spade terminals (EN 60529)<br>Molded IP66 lead wires (EN 60529) |  |  |  |
| Standard Voltages*                 | 12 VDC, 24 VDC (-5%/+10%)                                                   |  |  |  |

| Electrical | Power Ratings |         |   | ngs      | Ambient Temperature    |       |
|------------|---------------|---------|---|----------|------------------------|-------|
| Connection | Inrush        | Holding |   | Hot/Cold | Range                  | Type1 |
|            | VA            | VA      | W | W        | °C (°F)                |       |
| S0         | -             | -       | - | 4        | 5 to 50<br>(41 to 122) | 01    |
| LO         | -             | -       | - |          |                        | 02    |

 $<sup>^{\</sup>star}$  Other voltages or coil with red LED for power supply signal on request

<sup>1</sup> Refer to the drawings on following pages


<sup>2</sup> 0.5m (19.7in) lead wires

FLAPPER FLUID ISOLATION VALVES, 16mm

| Specifications             |             |                     |       |                              |                  |                  |
|----------------------------|-------------|---------------------|-------|------------------------------|------------------|------------------|
|                            | Orifice     | Flow<br>Coefficient |       | Operating Pressure bar (psi) |                  |                  |
| Connection                 | Size        |                     |       | min.                         | max.             | Power Rating (W) |
|                            | mm (inches) | Kv (m³/h)           | Cv    | min.                         | gases or liquids |                  |
| Pad Mounting1              | 0.8 (0.031) | 0.021               | 0.024 | -0.9 (-13)                   | 8 (116)          | 4                |
|                            | 1.2 (0.047) | 0.036               | 0.042 | -0.9 (-13)                   | 4 (58)           | 4                |
|                            | 1.6 (0.063) | 0.042               | 0.049 | -0.9 (-13)                   | 2 (29)           | 4                |
| 1/4-28 UNF                 | 0.8 (0.031) | 0.021               | 0.024 | -0.9 (-13)                   | 8 (116)          | 4                |
|                            | 1.2 (0.047) | 0.036               | 0.042 | -0.9 (-13)                   | 4 (58)           | 4                |
|                            | 1.6 (0.063) | 0.042               | 0.049 | -0.9 (-13)                   | 2 (29)           | 4                |
| Push-in Hose<br>Connection | 0.8 (0.031) | 0.021               | 0.024 | -0.9 (-13)                   | 8 (116)          | 4                |
|                            | 1.2 (0.047) | 0.036               | 0.042 | -0.9 (-13)                   | 4 (58)           | 4                |
|                            | 1.6 (0.063) | 0.042               | 0.049 | -0.9 (-13)                   | 2 (29)           | 4                |

<sup>12</sup> hexagon socket head cap mounting screws M2.5, stainless steel, supplied





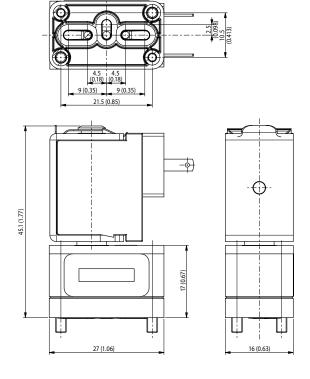
## **Options**

| Description                            | Catalog Number |  |  |  |
|----------------------------------------|----------------|--|--|--|
| Push-in-Hose Barb Kit 3/2              |                |  |  |  |
| Subbase Qty: 1                         | 534662-001     |  |  |  |
| Hex nut Qty: 2                         | 334002-001     |  |  |  |
| Push-in-Hose Barb Kit 2/2 Codification |                |  |  |  |
| Subbase Qty: 1                         | 534662-002     |  |  |  |
| Hex nut Qty: 2                         | 334002-002     |  |  |  |
| 1/4-28 Threaded Kit 3/2                |                |  |  |  |
| Subbase Qty: 1                         | - 534661-001   |  |  |  |
| Hex nut Qty: 2                         | 334001-001     |  |  |  |
| 1/4-28 Threaded Kit 2/2                |                |  |  |  |
| Subbase Qty: 1                         | 534661-002     |  |  |  |
| Hex nut Qty: 2                         |                |  |  |  |

## Installation

- The solenoid valves can be mounted in any position without affecting operation
- Pad-mounting solenoid valve supplied with seal

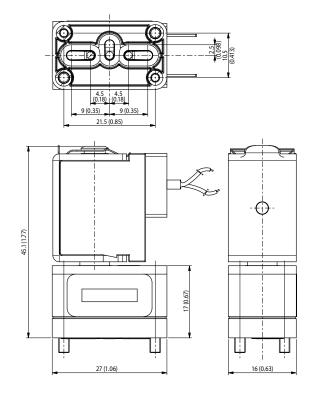
Subbases available on request


FLAPPER FLUID ISOLATION VALVES, 16mm

## **Dimensions: mm (inches)**

Type 01

Solenoid with spade terminals (S0) DIN 46340 IP40

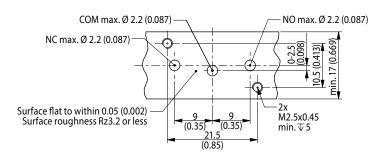




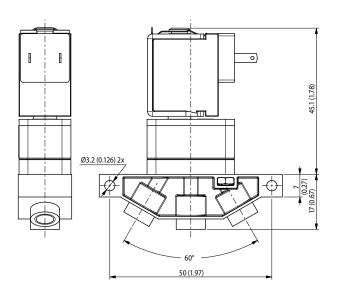

Type 02

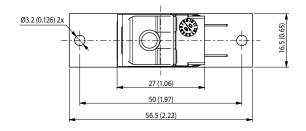
Leaded coil (L0) 24 AWG, lead wires: 500mm (19.7in) long IP66



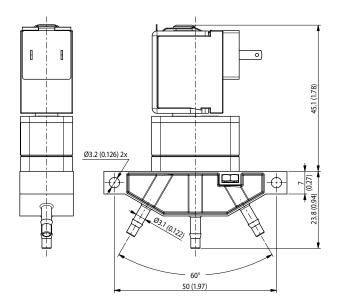


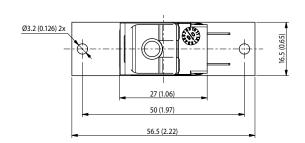

FLAPPER FLUID ISOLATION VALVES, 16mm


### **Dimensions: mm (inches)**


## **Subbase Mounting Pattern**

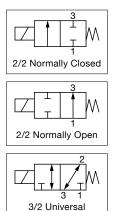






#### 1/4 - 28 UNF Version






#### **Version with Push-in Hose Connection**





### FLAPPER SOLENOID FLUID ISOLATION VALVES, 22mm

- Flapper isolation valves are designed for use with neutral or highly aggressive liquids in analytical and medical systems
- Special Flapper mechanism results in no pumping or sticking effects
- Reduced heat transfer between control mechanism and fluid make them ideal for use with heat-sensitive reagents and biological samples
- Hermetic separation of control mechanism prevents particulate contamination caused by friction of moving parts, assuring maximum purity of liquid samples
- Excellent self-draining capability and easy-to-flush lowvolume internal cavity make these valves ideal in application where cross-contamination must be minimized
- · Meets all relevant CE directives, and is RoHS compliant
- Typical applications include:
  - In-vitro Diagnostics
  - Hematology
  - DNA Sequencing
  - Industrial Liquid Analyzers



**EPDM** 



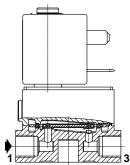
# Fluids\* Temperature Range Seal Materials\* FFKM 5 °C to 50 °C Liquids or Gases1 (44 °F to 100 °F) FKM

<sup>\*</sup> Ensure that the compatibility of the materials in contact with the fluids is verified

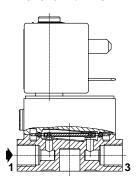
| General Valve Information |                             |  |  |  |  |  |
|---------------------------|-----------------------------|--|--|--|--|--|
| Body                      | PEEK                        |  |  |  |  |  |
| Others                    | Stainless Steel             |  |  |  |  |  |
| Response Time             | < 10ms                      |  |  |  |  |  |
| Internal Volume           | 0.48ml                      |  |  |  |  |  |
| Max. Viscosity            | 20 cSt (mm <sup>2</sup> /s) |  |  |  |  |  |

(41 °F to 122 °F)

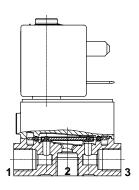
| Electrical Characteristics      |                                               |  |  |  |  |  |  |  |
|---------------------------------|-----------------------------------------------|--|--|--|--|--|--|--|
| Coil Insulation Class           | F                                             |  |  |  |  |  |  |  |
| Connector                       | Spade plug (Ø6 to 8mm) or Lead Wires1         |  |  |  |  |  |  |  |
| Connector Specification         | DIN 43650, 11mm (0.43in), industry standard B |  |  |  |  |  |  |  |
| Electrical Safety               | IEC 335 (lead wires: EN 60730)                |  |  |  |  |  |  |  |
| Electrical Enclosure Protection | Molded IP65 (EN 60529)                        |  |  |  |  |  |  |  |
| Standard Voltages*              | 12 VDC, 24 VDC (-5%/+10%)                     |  |  |  |  |  |  |  |


<sup>\*</sup> Other voltages on request

<sup>&</sup>lt;sup>1</sup> 0.45m (17.7in) lead wires


| Duefin           |        | Power Ratings Ambient |      | Ambient<br>Temperature | Ponlogo                |             |                  |    |  |
|------------------|--------|-----------------------|------|------------------------|------------------------|-------------|------------------|----|--|
| Prefix<br>Option | Inrush | Hole                  | ding | Hot/Cold               | Ranges                 | nepiacei    | Replacement Coil |    |  |
|                  | VA     | VA                    | W    | W                      | °C (°F)                | 12 VDC      | 24 VDC           |    |  |
| S1               | _      |                       |      | 9.6                    | 5 to 50                | 400129-005  | -                | 01 |  |
| 31               | -      | -                     | _    | 10                     | (50 to 122)            | -           | 400129-007       | 01 |  |
| LO               | ı      | 1                     | 1    | 10                     | 5 to 50<br>(50 to 122) | 400119-011D | 400119-008D      | 02 |  |

<sup>&</sup>lt;sup>1</sup> Refer to the drawings on following pages

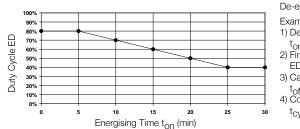

## **Functional Principle**



Function 2/2 NC



Function 2/2 NO




Function 3/2 U

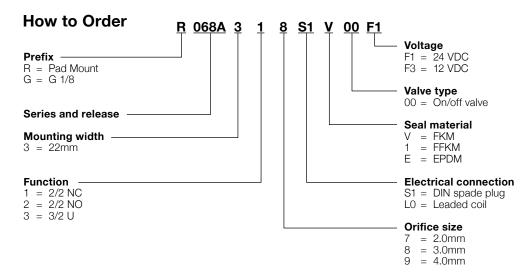
<sup>1</sup> Filtration: 50µm

FLAPPER SOLENOID FLUID ISOLATION VALVES, 22mm

#### RECOMMENDATION FOR MAXIMUM DUTY CYCLE



De-energising time:  $t_{Off} = t_{On} \times (100\% / ED - 1)$ Example:


- 1) Determine energising time in minutes (ton):
- t<sub>on</sub> = 15 min 2) Find maximum duty cycle value in diagram: FD = 60%
- 3) Calculate de-energising time:  $t_{Off}=15~min~x~(100\%~/~60\%~-~1)=10~min$  4) Complete cycle time:

 $t_{\text{Cycle}} = t_{\text{On}} + t_{\text{Off}} = 15 \text{ min} + 10 \text{ min} = 25 \text{ min}$ 

Note: 100% duty cycle possible when using the power-save connector (catalogue number [24 V DC]: 88100934, catalogue number [12 V DC]: 833-150063)

| <b>Specification</b>      | S               |                        |      |            |                          |        |                 |  |
|---------------------------|-----------------|------------------------|------|------------|--------------------------|--------|-----------------|--|
| Connection                | Orifice<br>Size | Flo                    |      |            | ing Pressure<br>ar (psi) | Power  | Catalog Number  |  |
| Connection                |                 |                        |      | min.       | max.                     | Rating | Body            |  |
|                           | mm (inches)     | Kv (m <sup>3</sup> /h) | Cv   | 111111.    | gases or liquids         | W      | PEEK            |  |
| 2/2 NC - Normally         | Closed          |                        |      |            |                          |        |                 |  |
|                           | 2 (0.079)       | 0.10                   | 0.12 | -0.9 (-13) | 5 (72.5)                 | 10     | G068A317xxx00xx |  |
| G1/8                      | 3 (0.118)       | 0.16                   | 0.18 | -0.9 (-13) | 3 (43)                   | 10     | G068A318xxx00xx |  |
|                           | 4 (0.157)       | 0.30                   | 0.35 | -0.9 (-13) | 1.5 (22)                 | 10     | G068A319xxx00xx |  |
|                           | 2 (0.079)       | 0.10                   | 0.12 | -0.9 (-13) | 5 (72.5)                 | 10     | R068A317xxx00xx |  |
| Pad Mounting <sup>1</sup> | 3 (0.118)       | 0.16                   | 0.18 | -0.9 (-13) | 3 (43)                   | 10     | R068A318xxx00xx |  |
|                           | 4 (0.157)       | 0.30                   | 0.35 | -0.9 (-13) | 1.5 (22)                 | 10     | R068A319xxx00xx |  |
| 2/2 NO - Normally         | Open            |                        |      |            |                          |        |                 |  |
|                           | 2 (0.079)       | 0.10                   | 0.12 | -0.9 (-13) | 5 (72.5)                 | 10     | G068A327xxx00xx |  |
| G1/8                      | 3 (0.118)       | 0.16                   | 0.18 | -0.9 (-13) | 2 (29)                   | 10     | G068A328xxx00xx |  |
|                           | 4 (0.157)       | 0.30                   | 0.35 | -0.9 (-13) | 1 (14.5)                 | 10     | G068A329xxx00xx |  |
|                           | 2 (0.079)       | 0.10                   | 0.12 | -0.9 (-13) | 5 (72.5)                 | 10     | R068A327xxx00xx |  |
| Pad Mounting <sup>1</sup> | 3 (0.118)       | 0.16                   | 0.18 | -0.9 (-13) | 2 (29)                   | 10     | R068A328xxx00xx |  |
|                           | 4 (0.157)       | 0.30                   | 0.35 | -0.9 (-13) | 1 (14.5)                 | 10     | R068A329xxx00xx |  |
| 3/2 U-Universal           |                 |                        |      |            |                          |        |                 |  |
|                           | 2 (0.079)       | 0.10                   | 0.12 | -0.9 (-13) | 5 (72.5)                 | 10     | G068A337xxx00xx |  |
| G1/8                      | 3 (0.118)       | 0.16                   | 0.18 | -0.9 (-13) | 2 (29)                   | 10     | G068A338xxx00xx |  |
|                           | 4 (0.157)       | 0.30                   | 0.35 | -0.9 (-13) | 1 (14.5)                 | 10     | G068A339xxx00xx |  |
|                           | 2 (0.079)       | 0.10                   | 0.12 | -0.9 (-13) | 5 (72.5)                 | 10     | R068A337xxx00xx |  |
| Pad Mounting <sup>1</sup> | 3 (0.118)       | 0.16                   | 0.18 | -0.9 (-13) | 2 (29)                   | 10     | R068A338xxx00xx |  |
|                           | 4 (0.157)       | 0.30                   | 0.35 | -0.9 (-13) | 1 (14.5)                 | 10     | R068A339xxx00xx |  |

<sup>1 4</sup> hexagon socket head cap mounting screws M3 x 8mm (0.31in), stainless steel, ISO 4762 supplied



#### **Options**

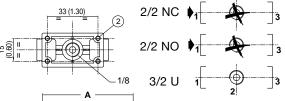
- Subbases available on request
- Power-save connector (2.5 W after 140ms of operation), 24 VDC version: 88100934, 12 VDC version: 833-150063
- Impulse manual operator

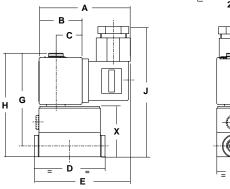
### Installation

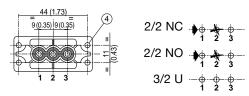
- The solenoid valves can be mounted in any position without affecting operation
- Pad-mounting solenoid valve supplied with seal
- Pipe connections 1/8 have standard thread according to ISO 228/1

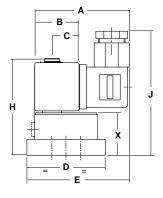
01035GB-2019-R01

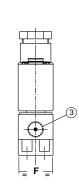
FLAPPER SOLENOID FLUID ISOLATION VALVES, 22mm


#### **Dimensions: mm (inches)**


Type 01


Solenoid with spade plug connector (S1) Epoxy molded

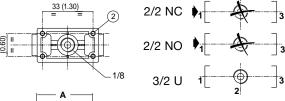

IEC 335/DIN 43650 IP65

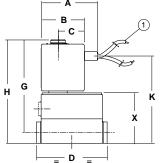


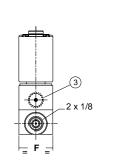






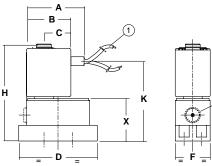





Type 02

Leaded coil (L0) IEC 335, lead wires: 0.45m (17.7in) long IP40









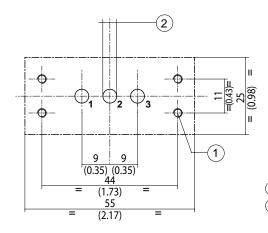

3 2 x 1/8

| 44 (1.73) = 4<br>9 (0.35) 9 (0.35) 1 1 1 1 2 3 | 2/2 NC • • • • • • • • • • • • • • • • • • |
|------------------------------------------------|--------------------------------------------|
| 1 2 3                                          | 3/2 U                                      |



| Туре  | Prefix<br>Option | Catalog<br>Number | Α              | В              | С              | D              | E              | F              | G              | Н              | J              | К              | х            | weight<br>kg <sup>1</sup> |              |       |
|-------|------------------|-------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--------------|---------------------------|--------------|-------|
| 01    | S1               | G068AS1           | 60<br>(2.36)   | 28.5<br>(1.12) | 17.5<br>(0.69) | 46.2<br>(1.82) | 62.5<br>(2.46) | 22.3<br>(0.88) | 60.8<br>(2.40) | 67.8<br>(2.67) | 82<br>(3.23)   | -              | 33<br>(1.30) | 0.130                     |              |       |
| 01    | 51               | 51                | 51             | R068AS1        | 60<br>(2.36)   | 28.5<br>(1.12) | 17.5<br>(0.69) | 50<br>(1.97)   | 65<br>(2.56)   | 22.3<br>(0.88) | -              | 61.8<br>(2.43) | 76<br>(3.00) | -                         | 27<br>(1.06) | 0.124 |
| 02    | 10               | G068AL0           | 35<br>(1.38)   | 28.5<br>(1.12) | 17.5<br>(0.69) | 46.2<br>(1.82) | -              | 22.3<br>(0.88) | 60.8<br>(2.40) | 67.8<br>(2.67) | -              | 56.5<br>(2.22) | 33<br>(1.30) | 0.124                     |              |       |
| 02 L0 | R068AL0          | 35<br>(1.38)      | 28.5<br>(1.12) | 17.5<br>(0.69) | 50<br>(1.97)   | -              | 22.3<br>(0.88) | -              | 61.8<br>(2.43) | -              | 50.5<br>(1.99) | 27<br>(1.06)   | 0.120        |                           |              |       |

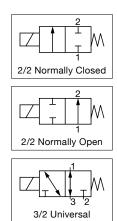
<sup>&</sup>lt;sup>1</sup> Type 01: includes coil(s) and connector(s); Type 02: with 0.45m (17.7in) lead wires


- 1 2 wires, length 0.45m (17.7in)
- 2 4 mounting holes, max. depth 7mm (0.27in), for self-tapping screw (type EJOT PT, K30)
- Manual operator location
- 4 mounting holes Ø3.2mm (0.126in) (4 hexagon socket head cap mounting screws M3 x 8mm (0.315in), stainless steel, ISO 4762 supplied)

FLAPPER SOLENOID FLUID ISOLATION VALVES, 22mm

## **Dimensions: mm (inches)**

## **Subbase Mounting Pattern**






- 1 4 mounting holes Ø3.2mm (0.126in)
- (2) Max. diameter 4.5mm (0.177in) 3x

## ROCKER MECHANISM, FLUID ISOLATION, HOSE CONNECTIONS

- · Valves for medical analysers, biotechnology, gas analysers
- Can be used to control acids and bases, as well as analytical reagents
- Any application where the fluid may not come into contact with metal parts and with the electromagnetic control section of the solenoid valves
- The valves are ideal for controlling aggressive fluids or when high purity is demanded and have easy to flush internal cavities
- They can also be used as a very small internal volume flowthrough sampling valve due to rocker technology
- Hermetic separation of control mechanism and fluid
- Reduced heat exchange between coil and fluid
- Protected manual operator
- The use of first class materials and thorough valve testing ensure high reliability and a lifetime of at least 1 million cycles
- The solenoid valves satisfy all relevant EC directives
- Typical applications include:
  - Hematology

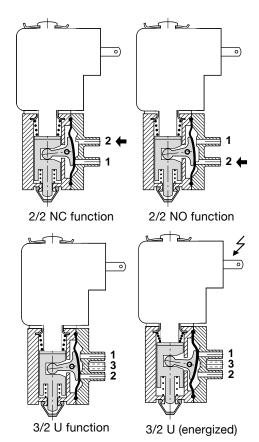




| Fluids*          | Temperature Range                  | Seal Materials*           |  |  |
|------------------|------------------------------------|---------------------------|--|--|
| Liquids or gases | 0 °C to 40 °C<br>(32 °F to 104 °F) | EPDM (ethylene-propylene) |  |  |

<sup>\*</sup> Ensure that the compatibility of the materials in contact with the fluids is verified.

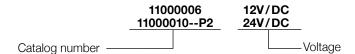
| General Valve Information* |                                                                 |  |  |  |  |  |
|----------------------------|-----------------------------------------------------------------|--|--|--|--|--|
| Body                       | PA12                                                            |  |  |  |  |  |
| Internal parts             | Stainless steel                                                 |  |  |  |  |  |
| Diaphragm-poppets          | EPDM                                                            |  |  |  |  |  |
| Cover                      | PA12 (transparent), enabling flow of fluid to be seen           |  |  |  |  |  |
| Differential pressure      | -0.7 to +2 bar (usable in 0.3 bar abs. vacuum) [1 bar =100 kPa] |  |  |  |  |  |
| Maximum viscosity          | 20 cSt (mm <sup>2</sup> /s)                                     |  |  |  |  |  |
| Response Time              | < 20ms                                                          |  |  |  |  |  |
| Internal Volume            | < 75 µl (connections not included)                              |  |  |  |  |  |


<sup>\*</sup> Ensure that the compatibility of the materials in contact with the fluids is verified

| Electrical Characteristics      |                                             |  |  |  |  |  |  |
|---------------------------------|---------------------------------------------|--|--|--|--|--|--|
| Coil Insulation Class           | F                                           |  |  |  |  |  |  |
| Duty cycle                      | 100%                                        |  |  |  |  |  |  |
| Coil                            | Two spade terminals 2.8 x 0.5 mm (DIN 46340 |  |  |  |  |  |  |
| Electrical Safety               | IEC 335                                     |  |  |  |  |  |  |
| Electrical Enclosure Protection | IP65 (EN60529)                              |  |  |  |  |  |  |
| Standard Voltages*              | 12 VDC, 24 VDC                              |  |  |  |  |  |  |

<sup>\*</sup> Other voltages on request

| F      | Power | Rati | ngs      | Ambient                 |          |                   |    |
|--------|-------|------|----------|-------------------------|----------|-------------------|----|
| Inrush | Hole  | ding | Hot/Cold | Temperature<br>Ranges   | Replacer | Type <sup>1</sup> |    |
| VA     | VA    | W    | W        | °C (°F)                 | -        | 24 VDC            |    |
| -      | -     | -    | 4/5      | -5 to 40<br>(23 to 104) | -        | 43004663          | 01 |


<sup>&</sup>lt;sup>1</sup> Refer to the dimensional drawings on the following page



ROCKER MECHANISM, FLUID ISOLATION, HOSE CONNECTIONS

| Specificatio    | ns                                       |                                   |       |       |                              |        |         |                 |                                                          |                        |  |  |
|-----------------|------------------------------------------|-----------------------------------|-------|-------|------------------------------|--------|---------|-----------------|----------------------------------------------------------|------------------------|--|--|
| Connection      | Orifice Size                             | Flow Coefficient                  |       |       | Operating Pressure bar (psi) |        |         | Power<br>Rating | Catalog Number<br>(protected impulse manual<br>operator) |                        |  |  |
| Connection      |                                          |                                   |       |       | max.                         |        |         | Rear            | central                                                  |                        |  |  |
|                 | mm (inches)                              | Kv (m³/h)                         | Cv    | l/min | min.                         | gases  | liquids | W               | Mounting                                                 | support plate mounting |  |  |
|                 | 2/2 NC - Normally closed / 2 connections |                                   |       |       |                              |        |         |                 |                                                          |                        |  |  |
|                 | 1.5 (0.059)                              | 0.05                              | 0.058 | 0.75  | -0.7 (-10)                   | 2 (29) | 2 (29)  | 5               | 11000006                                                 | 11000010P2             |  |  |
| Hose            | 2/2 NO - Normally open / 2 connections   |                                   |       |       |                              |        |         |                 |                                                          |                        |  |  |
| connection      | 1.5 (0.059)                              | 0.05                              | 0.058 | 0.75  | -0.7 (-10)                   | 2 (29) | 2 (29)  | 5               | 11000005P2                                               | 11000009               |  |  |
| to ID 1.5 mm    | 3/2 U - Universal / 3 connections        |                                   |       |       |                              |        |         |                 |                                                          |                        |  |  |
| flexible tubing | 1.5 (0.059)                              | 0.05                              | 0.058 | 0.75  | -0.7 (-10)                   | 2 (29) | 2 (29)  | 5               | 11000007P2                                               | 11000011P2             |  |  |
|                 | 3/2 U - Universa                         | 3/2 U - Universal / 4 connections |       |       |                              |        |         |                 |                                                          |                        |  |  |
|                 | 1.5 (0.059)                              | 0.05                              | 0.058 | 0.75  | -0.7 (-10)                   | 2 (29) | 2 (29)  | 5               | 11000008                                                 | 11000012               |  |  |

#### **How to Order**



### **Options**

- Stainless steel support plate for mounting between body and coil for:
  - 1 solenoid valve, catalogue number 88211001
  - 2 solenoid valves, catalogue number 88211002
  - 3 solenoid valves, catalogue number 88211003
- FKM (fluoroelastomer) diaphragm

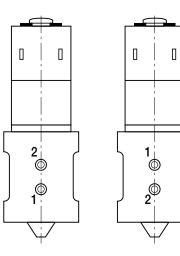
- 4 solenoid valves, catalogue number 88211004
- 5 solenoid valves, catalogue number 88211005
- For more, contact us

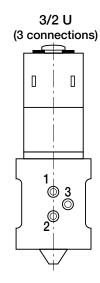
#### Installation

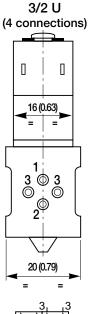
- The solenoid valves can be mounted in any position without affecting operation
- · Rear or control support plate mounting possible (see below)
- Hose connection of flexible tubing Ø 1.5 mm ID
- Compact size and simple tubing (see following page)
- Replacement coils are available
- Installation/maintenance instructions are included with each valve

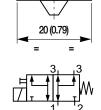
ROCKER MECHANISM, FLUID ISOLATION, HOSE CONNECTIONS

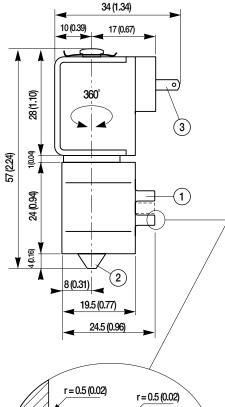
### **Dimensions: mm (inches)**

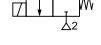




**TYPE 01** Prefix "SC" Solenoid DIN 43340


2/2 NO


11000005..12


2/2 NC





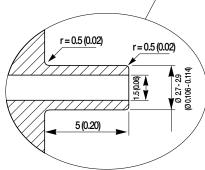










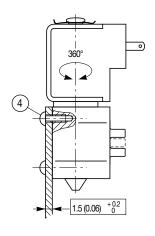



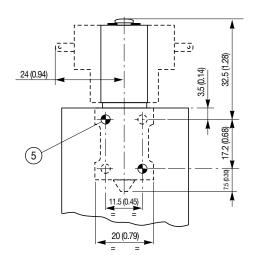



- (1) Hose bibs for connection of ID 1.5 mm flexible tubing
- Protected impulse type manual operator
- Coil with two spade terminals 2.8 x 0.5 (DIN 46340)

| Туре | Prefix option | Weight <sup>(1)</sup><br>kg |
|------|---------------|-----------------------------|
| 01   | SC            | 0.46                        |

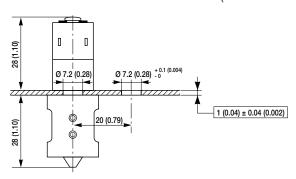
(1) Incl. coil



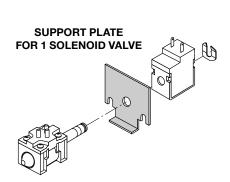


Details of hose bib

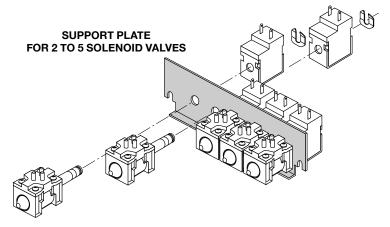
ROCKER MECHANISM, FLUID ISOLATION, HOSE CONNECTIONS

Dimensions: mm (inches)

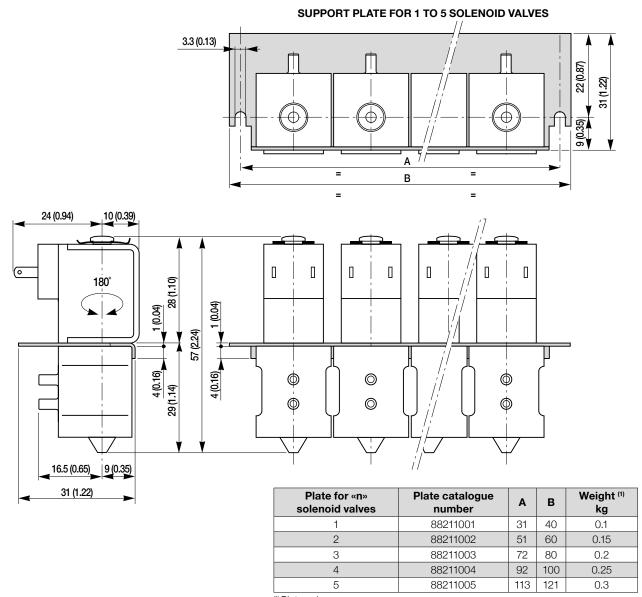

### **REAR MOUNTING**







- 2 self thread cutting «Torx» screws
   K 22 x 6 A2 stainless steel
   (screws delivered)
  - use these screws only
  - use plate with correct thickness
  - max. torque: 0.3 Nm
- (5) Two mounting holes 2.5 mm dia. Solenoid valve body has four holes for mounting purpose

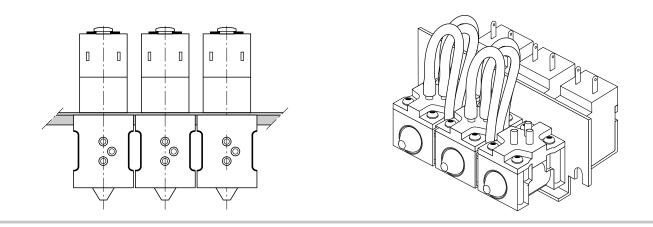
## **SUPPORT PLATE MOUNTING** (For solenoid valve of corresponding type)




- The panel must be of non-magnetic material.
- To fit to panel, remove the clip and the solenoid valve coil and install as indicated below.






ROCKER MECHANISM, FLUID ISOLATION, HOSE CONNECTIONS

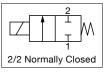


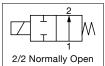
## (1) Plate only.

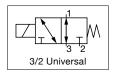
### **SIMPLE TUBING**

When valves mounted side by side on a support plate, an area is left open so that tubes pass between valve bodies



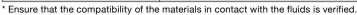




## S170-S370


## **ASCO™ MINIATURE SOLENOID VALVES**

### STEPPER MOTOR PINCH VALVES

- Stepper motor pinch valve, suitable to shut off media without producing neither turbulent flows, nor dead spaces. Particularly suitable for most of the analytical, medical and food applications.
- If equipped with fitting control electronics, the valve can perform ON-OFF functions, as well as analog input and potentiometer control. The "OPEN" and "CLOSE" positions of the valve will be set as indicated in the section "OPERATING INSTRUCTIONS.
- The system allows a bi-directional through flow and a high flow rate
- The valve is suitable for elastic tubings with hardness up to 90 Shore A.
- The tubing (not included in our supply) is the only material in contact with the fluid.
- Typical applications include:
  - Blood analysis devices
  - Sample handling
  - Devices with dynamic regulation







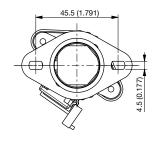


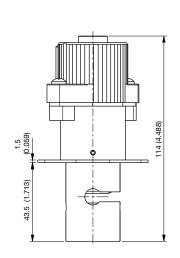

| <b>General Valve Information</b> | 1*                                |  |  |  |  |  |  |
|----------------------------------|-----------------------------------|--|--|--|--|--|--|
| Body                             | Anodized aluminium                |  |  |  |  |  |  |
| Pinching device                  | POM (reinforced acetal copolymer) |  |  |  |  |  |  |
| Engine cover                     | PA (Polyamide)                    |  |  |  |  |  |  |
| Board cover                      | PA (Polyamide)                    |  |  |  |  |  |  |
| Internal components              | Brass and Stainless Steel         |  |  |  |  |  |  |
| max. Tube hardness               | 90 Shore A                        |  |  |  |  |  |  |
| Ambient temperature              | -10°C +60°C                       |  |  |  |  |  |  |
| Minimum step                     | 0.033mm/step                      |  |  |  |  |  |  |

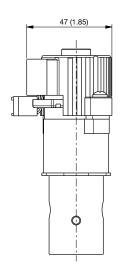


| Electrical Characteristics |                                   |                                                        |  |  |  |  |  |  |  |  |
|----------------------------|-----------------------------------|--------------------------------------------------------|--|--|--|--|--|--|--|--|
|                            | Versions without electronic board | Versions with electronic board                         |  |  |  |  |  |  |  |  |
| Continous duty             | ED 100%                           | ED 100%                                                |  |  |  |  |  |  |  |  |
| Insulation class           | B (130°C)                         | B (130°C)                                              |  |  |  |  |  |  |  |  |
| Drive methods              | 1-2 phase                         |                                                        |  |  |  |  |  |  |  |  |
| Drive circuit              | bipolar chopper                   |                                                        |  |  |  |  |  |  |  |  |
| Windings resistance        | 24Ω                               |                                                        |  |  |  |  |  |  |  |  |
| Current / phase            | 500mA                             |                                                        |  |  |  |  |  |  |  |  |
| Electric connection        | Molex pitch 2.54mm 4 pins         | Molex pitch 2.54mm 6 pins<br>Molex pitch 2.54mm 2 pins |  |  |  |  |  |  |  |  |
| Protection degree          | IP 40 (DIN40050)                  | IP 40 (EN 60529)                                       |  |  |  |  |  |  |  |  |

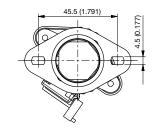


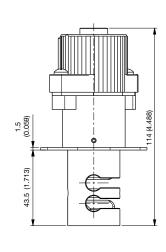

STEPPER MOTOR PINCH VALVES

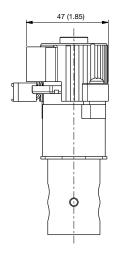

| Specifications                |                      |                         |                 |                 |               |           |                                                                                |                                               |                                               |                       |                     |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |              |  |  |
|-------------------------------|----------------------|-------------------------|-----------------|-----------------|---------------|-----------|--------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------|--|--|
|                               | Tul                  | bing                    | Pinching        | Closing         | Power         |           |                                                                                |                                               | LED                                           | indicators            |                     |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |              |  |  |
| Catalog number                | max.<br>O.D.<br>(mm) | orifice<br>size<br>(mm) | strength<br>(N) | speed<br>(mm/s) | Rating<br>(W) | Voltage   | Operation                                                                      | Green                                         | Yellow                                        | Red                   | Blue                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |              |  |  |
| 2-way                         |                      |                         |                 |                 |               |           |                                                                                |                                               |                                               |                       |                     |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |              |  |  |
| S170XA01X0900XX               | 9.5                  |                         | up to 80N       | 3.33            | 9             | 12V DC    | Wiring                                                                         |                                               |                                               | N/A                   |                     |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |              |  |  |
| 2-way On/Off                  |                      |                         |                 |                 |               |           |                                                                                |                                               |                                               |                       |                     |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |              |  |  |
| S170XA01X1900VU               |                      |                         |                 |                 |               |           | Wiring                                                                         | Valve open                                    | Valve closed                                  |                       |                     |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |              |  |  |
| S170XA01X2900VU               |                      |                         |                 |                 |               |           | Analog input<br>(0-5V)                                                         | see Or                                        | perating                                      |                       | Programming mode    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |              |  |  |
| S170XA01X3900VU               | 9.5                  | 6.4                     | up to 80N       | 3.33            | 9             | [12%24] V | Analog input<br>(4-20mA)                                                       | instru                                        | octions                                       | Alarm/<br>Malfunction |                     |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |              |  |  |
| S170XA01X4900VU               |                      |                         |                 |                 |               |           | Potentiometer Val                                                              | Valve open                                    | Valve open                                    | Valve open            | Valve open          | Valve open | Valve open | Valve open | Valve open | Valve open | Valve open | Valve open | Valve open | Valve open | Valve open | Valve open | Valve open | Valve open | Valve open | Valve open | Valve open | Valve open | Valve open | Valve open | Valve open | Valve open | Valve open | Valve closed |  |  |
| S170XA01X5900VU               |                      |                         |                 |                 |               |           | Fail saving                                                                    | Valve open                                    | Valve<br>closed                               |                       |                     |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |              |  |  |
| 2-way normally o <sub>l</sub> | pen                  |                         |                 |                 |               |           |                                                                                |                                               |                                               |                       |                     |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |              |  |  |
| S170XA01X8900VU               | 9.5                  | 6.4                     | up to 80N       | 3.33            | 9             | [12%24] V | Fail saving<br>controlled via<br>Potentiometer<br>proportional<br>flow control | Valve open                                    | Valve<br>closed                               | Alarm/<br>Malfunction | Programming<br>mode |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |              |  |  |
| 2-way normally cl             | osed                 |                         |                 |                 |               |           |                                                                                |                                               |                                               |                       |                     |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |              |  |  |
| S170XA01X8901VU               | 9.5                  | 6.4                     | up to 80N       | 3.33            | 9             | [12%24] V | Fail saving<br>controlled via<br>Potentiometer<br>proportional<br>flow control | Valve open                                    | Valve<br>closed                               | Alarm/<br>Malfunction | Programming<br>mode |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |              |  |  |
| S170XA02X1900VU               |                      |                         |                 |                 |               |           | On/Off                                                                         |                                               |                                               |                       |                     |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |              |  |  |
| 3-way                         |                      |                         |                 |                 |               |           |                                                                                |                                               |                                               |                       |                     |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |              |  |  |
| S370XA01X0900XX               | 9.5                  |                         | up to 80N       | 3.33            | 9             | [12%24] V | Wiring                                                                         |                                               |                                               | N/A                   |                     |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |              |  |  |
| 3-way On/Off                  |                      |                         |                 |                 |               |           |                                                                                |                                               |                                               |                       |                     |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |              |  |  |
| S370XA01X1900VU               | 9.5                  | 6.4                     | up to 80N       | 3.33            | 9             | [12%24] V |                                                                                | Upper<br>Tube open<br>Lower<br>Tube<br>closed | Upper<br>Tube<br>closed<br>Lower<br>Tube Open | Alarm/<br>Malfunction | Programming<br>mode |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |              |  |  |


STEPPER MOTOR PINCH VALVES

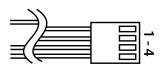
#### Dimensions: mm (inches)


#### S170-XA01X0900XX







#### S370-XA01X0900XX







## STEPPER MOTOR WIRING

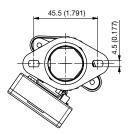


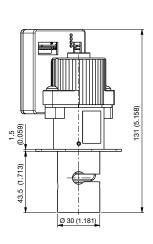
| PIN NO. | WIRE COLOR | MOTOR |
|---------|------------|-------|
| 1       | YELLOW     | B3    |
| 2       | ORANGE     | B1    |
| 3       | BROWN      | A3    |
| 4       | BLACK      | A1    |

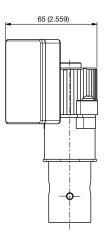
## **WIRE COLOUR CODE**

| H         | HEAD SPINDLE IN |      |   |   |  |  |  |  |  |  |  |  |  |
|-----------|-----------------|------|---|---|--|--|--|--|--|--|--|--|--|
| CONNECTOR |                 | STEP |   |   |  |  |  |  |  |  |  |  |  |
| PIN NO.   | 1               | 2    | 3 | 4 |  |  |  |  |  |  |  |  |  |
| 1         | +               | +    | - | - |  |  |  |  |  |  |  |  |  |
| 2         | -               | -    | + | + |  |  |  |  |  |  |  |  |  |
| 3         | -               | +    | + | - |  |  |  |  |  |  |  |  |  |
| 4         | +               | -    | - | + |  |  |  |  |  |  |  |  |  |

| F         | HEAD SPINDLE out |       |   |   |  |  |  |  |  |  |  |  |  |
|-----------|------------------|-------|---|---|--|--|--|--|--|--|--|--|--|
| CONNECTOR |                  | STEP  |   |   |  |  |  |  |  |  |  |  |  |
| PIN NO.   | 1                | 1 2 3 |   |   |  |  |  |  |  |  |  |  |  |
| 1         | -                | -     | + | + |  |  |  |  |  |  |  |  |  |
| 2         | +                | +     | - | - |  |  |  |  |  |  |  |  |  |
| 3         | -                | +     | + | - |  |  |  |  |  |  |  |  |  |
| 4         | +                | -     | - | + |  |  |  |  |  |  |  |  |  |

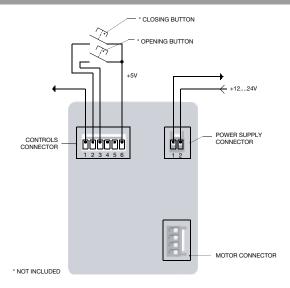

#### Notes


- Some data, e.g. actuating time and power absorption, are directly depending on the electronic control and can vary accordingly
- For the use of a tubing with outside diameter smaller than 6mm, it is necessary to install the tubing guide sleeve (drawing K29501)


STEPPER MOTOR PINCH VALVES

## Dimensions: mm (inches)

S170XA01X1900VU S170XA01X2900VU S170XA01X3900VU S170XA01X4900VU S170XA01X5900VU S170XA02X1900VU








STEPPER MOTOR PINCH VALVES

#### **Electrical connection**



#### S170XA01X1900VU

#### **Operating Instructions**

When power is supplied, the valve will reset (red and green LEDs on) and will automatically move to OPEN position (red LED off).

1. Insert the tube in the respective slot

The valve is now operational and by providing the opening or closing pulse (minimum 10ms), the valve will act accordingly.

LED signals meaning:

- Green LED on -> Valve open
- Yellow LED on -> Valve closed

#### **Notes**

- · Valve position fixed on loss of power.
- When the power will be restored, the valve will reset (red and green LEDs on) and will automatically move to OPEN position (red LED off).
- For use with different tubings, the min/max opening of the pinching device can be modified as indicated in the Maintenance Instructions. As an alternative, it is also possible to order the valves already programmed, with the desired strokes.
- · Some data, e.g. actuating time and power absorption, are directly depending on the electronic control and can vary accordingly
- Valve position fixed on loss of power. "Fail Saving" function available on demand.

#### S170XA02X1900VU

#### **Operating Instructions**

When power is supplied, the valve will reset (red and green LEDs on) and will automatically move to CLOSED position (red LED off).

- 1. Give an OPEN command
- 2. Insert the tube in the respective slot

The valve is now operational and by providing the opening or closing pulse (minimum 10ms), the valve will act accordingly.

LED signals meaning:

• Green LED on -> Valve open

#### Notes

- · Valve position fixed on loss of power.
- When the power will be restored, the valve will reset (red and green LEDs on) and will automatically move to CLOSED position (red LED off).

#### S370XA01X1900VU

#### **Operating Instructions**

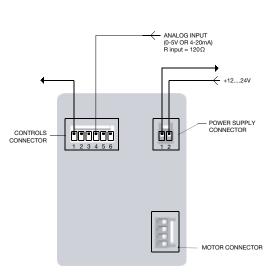
When power is supplied, the valve will not move and the red LED will be on.

By simultaneously providing the opening and closing pulses, the valve will reset (red, yellow and green LEDs on) and will automatically move to OPEN position (red and yellow LEDs off).

- 1. Insert the tube in the upper slot
- 2. Provide a closing command and insert the tube in the lower slot

The valve is now operational and by providing the opening or closing pulse (minimum 10ms), the valve will act accordingly.

LED signals meaning:


- Green LED on -> upper slot open lower slot closed
- Yellow LED on -> upper slot closed lower slot open

#### **Notes**

- · Valve position fixed on loss of power.
- When the power will be restored, the valve will not move and the red LED will be on.
- Remove the tube from the lower slot. If the current position of the valve makes it difficult to remove the tube, use the closing command to facilitate this operation. During this phase, the yellow and red LEDs will be
- After removing the tube, provide simultaneously the opening and closing pulses, so that the valve resets (red, yellow and green LEDs on). This way, the valve will automatically move to OPEN position (red and yellow LEDs off). Perform a closing command and insert the tube in the lower

STEPPER MOTOR PINCH VALVES

#### **Electrical connection**



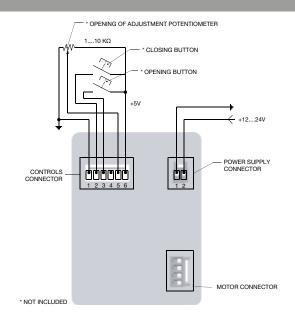
#### S170XA01X2900VU S170XA01X3900VU

#### **Operating Instructions**

When power is supplied, the valve will reset (red and green LEDs on) and will automatically move to CLOSED position.

Depending on the version, there will be:

- a. green LED on and yellow LED flashing  $% \left( 1\right) =\left( 1\right) +\left( 1\right) +\left($
- b. yellow LED on and green LED flashing for the "current version" [4  $\div$  20]mA.
- 1. Depending on the chosen version, supply 5V or 20mA input to have a complete opening of the valve.
- 2. Insert the tube in the respective slot


The valve is now operational and by providing a  $[4 \div 20]$ mA or a  $[0 \div 5]$ V signal (depending on the chosen version), the valve will act accordingly.

LED signals meaning:

- green LED on and yellow LED flashing -> analogic input on ("voltage version")
- yellow LED on and green LED flashing -> analogic input on ("current version")

#### Notes

- Valve position fixed on loss of power.
- When the power will be restored, the valve will reset (red and green LEDs on) and will automatically move to the position set by the input analog signal.
- For use with different tubings, the min/max opening of the pinching device can be modified as indicated in the Maintenance Instructions. As an alternative, it is also possible to order the valves already programmed, with the desired strokes.
- Some data, e.g. actuating time and power absorption, are directly depending on the electronic control and can vary accordingly
- Valve position fixed on loss of power. "Fail Saving" function available on demand.



#### S170XA01X4900VU

#### **Operating Instructions**

When power is supplied, the valve will reset (red and green LEDs on) and will automatically move to OPEN position (red LED off).

If the position of the potentiometer doesn't allow a complete opening of the valve (the yellow LED will be on, in addition to the red and green ones), adjust the potentiometer so as to have a complete opening.

1. Insert the tube in the respective slot

The valve is now operational and by providing the opening or closing pulse (minimum 10ms), the valve will act accordingly.

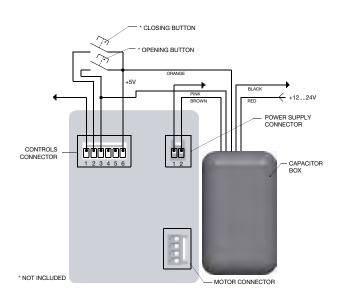
LED signals meaning:

- Green LED on -> Valve open\*
- Yellow LED on -> Valve closed

\*the opening degree is controlled by the position of the potentiometer.

#### **Notes**

 Valve position fixed on loss of power. When the power will be restored, the valve will reset (red and green LEDs on) and will automatically move to OPEN position (red LED off). If the potentiometer is not in complete opening position, the yellow LED will be on.


NB: With the open valve, it will be possible to adjust the opening degree according to your needs, by adjusting the potentiometer.

- For use with different tubings, the min/max opening of the pinching device can be modified as indicated in the Maintenance Instructions. As an alternative, it is also possible to order the valves already programmed, with the desired strokes.
- Some data, e.g. actuating time and power absorption, are directly depending on the electronic control and can vary accordingly
- Valve position fixed on loss of power. "Fail Saving" function available on demand.



STEPPER MOTOR PINCH VALVES

#### **Electrical connection**

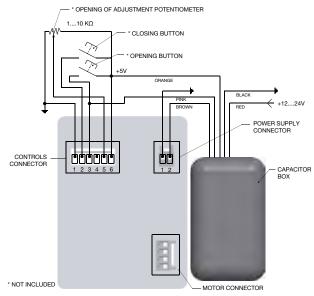


#### S170XA01X5900VU

#### **Operating Instructions**

When power is supplied, the valve will be in OPEN position (green LED on).

1. Insert the tube in the respective slot


The valve is now operational and by providing the opening or closing pulse (minimum 10ms), the valve will act accordingly.

LED signals meaning:

- Green LED on -> Valve open
- Yellow LED on -> Valve closed

#### Notes

- The valve, being normally open on loss of power (through the condenser block), will move to OPEN position.
- For use with different tubings, the min/max opening of the pinching device can be modified as indicated in the Maintenance Instructions. As an alternative, it is also possible to order the valves already programmed, with the desired strokes.
- Some data, e.g. actuating time and power absorption, are directly depending on the electronic control and can vary accordingly



### S170XA01X8900VU S170XA01X8901VU

#### **Operating Instructions**

When power is supplied, the valve will reset (red and green LEDs on) and will automatically move to OPEN position (red LED off).

If the position of the potentiometer doesn't allow a complete opening of the valve (the yellow LED will be on, in addition to the red and green ones), adjust the potentiometer so as to have a complete opening.

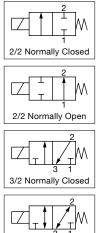
1. Insert the tube in the respective slot

The valve is now operational and by providing the opening or closing pulse (minimum 10ms), the valve will act accordingly.

LED signals meaning:

- Green LED on -> Valve open\*
- Yellow LED on -> Valve closed

\*the opening degree is controlled by the position of the potentiometer.


#### Notes

- The normally closed valve will, in case of loss of power (through the capacitor box), move to CLOSED position. The normally open valve will, in case of loss of power (through the capacitor box), move to OPEN position\*. NB: With the open valve, it will be possible to adjust the opening degree according to your needs, by adjusting the potentiometer.
- For use with different tubings, the min/max opening of the pinching device can be modified as indicated in the Maintenance Instructions.As an alternative, it is also possible to order the valves already programmed, with the desired strokes.
- Some data, e.g. actuating time and power absorption, are directly depending on the electronic control and can vary accordingly



### LEVER SOLENOID FLUID ISOLATION VALVES

- Lever mechanism isolation valves designed for use with aggressive and corrosive liquids and gases in analytical instrumentation and the chemical manufacturing industries
- Large orifice sizes make these valves ideal for high flow-rate and high pressure applications
- Ideally suited for quickly flushing systems of corrosive media and routing aggressive reagents to chemical reaction vessels and waste containers
- Available in both a 2-Way normally closed and normally open versions, as well as 3-Way normally closed, normally open and universal versions; each with multiple connection options
- Meets all relevant CE directives, and is RoHS compliant
- Typical applications include:
  - Raw-material Chemical Manufacturing
  - Pharmaceutical
  - Chip/Wafer Manufacturing
  - Waste Water Treatment

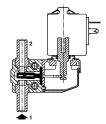




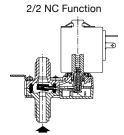
| Fluids*                                             | Temperature Range                     | Seal Materials*                                                      |
|-----------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|
| Air, Inert Gases, Filtered Water,<br>Oil or Liquids | -10 °C to 100 °C<br>(14 °F to 212 °F) | VMQ (silicone)<br>FKM (fluoroelastomer)<br>EPDM (ethlyene-propylene) |

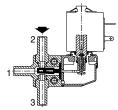
<sup>\*</sup> Ensure that the compatibility of the materials in contact with the fluids is verified

| General Valve Information |                      |                                     |  |  |  |  |  |  |  |
|---------------------------|----------------------|-------------------------------------|--|--|--|--|--|--|--|
| Body                      | PEI (polyetherimide) | G 1/2: PPS (polypropylene sulphide) |  |  |  |  |  |  |  |
| Response Time             |                      | ~ 25ms                              |  |  |  |  |  |  |  |
| Max. Viscosity            | 37                   | cSt (mm <sup>2</sup> /s)            |  |  |  |  |  |  |  |


| Electrical Characteristics      |                                                                                                                 |  |  |  |  |  |  |  |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Coil Insulation Class           | F                                                                                                               |  |  |  |  |  |  |  |  |
| Connector                       | Spade plug (cable Ø6-8mm or Ø6-10mm)                                                                            |  |  |  |  |  |  |  |  |
| Connector Specification         | with coil 6W/6W (BMX) DIN 43650, 11mm, industry standard B with coil 8W/9W (AMX) ISO 4400/EN 175301-803, form A |  |  |  |  |  |  |  |  |
| Electrical Safety               | IEC 335                                                                                                         |  |  |  |  |  |  |  |  |
| Electrical Enclosure Protection | Molded IP65 (EN 60529)                                                                                          |  |  |  |  |  |  |  |  |
| Standard Voltages <sup>1</sup>  | 12 VDC, 24 VDC<br>AC ~: 24 V to 115 V to 230 V/50 Hz (BMX = 50 – 60 Hz)                                         |  |  |  |  |  |  |  |  |

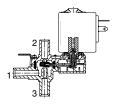
<sup>1</sup> Other voltages and 60 Hz available on request


|                  | Po             | wer F | Rating               | ıs          | Ambient              |                           |          |          |
|------------------|----------------|-------|----------------------|-------------|----------------------|---------------------------|----------|----------|
| Prefix<br>Option | Inrush Holding |       | Temperature<br>Range | Replace     | ment Coil            | Type <sup>1</sup>         |          |          |
|                  |                |       | °C (°F)              | 230 V/50 Hz | 24 VDC               |                           |          |          |
|                  | 16             | 10    | 6                    | 6           | -10 to 60 (14 to 40) | 43005164                  | 43005149 | 01 (BMX) |
| SC               | 23             | 14    | 8                    | 9           | -10 to 60 (14 to 40) | to 60 (14 to 40) 43005149 |          | 02 (AMX) |
|                  | 44             | 24    | 8                    | 13          | -10 to 60 (14 to 40) | o 60 (14 to 40) 43005320  |          | 03 (FNX) |


<sup>1</sup> Refer to the dimensional drawings on the following page



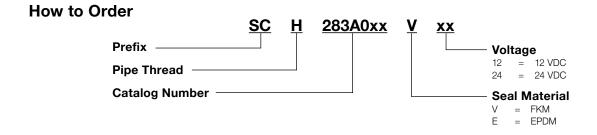



2/2 NC Function





2/2 NO Function


3/2 NC Function



3/2 U Function

LEVER SOLENOID FLUID ISOLATION VALVE

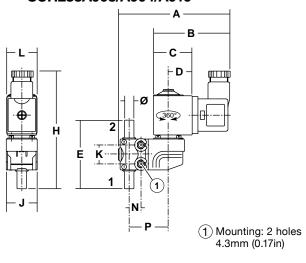
| Specificatio    | ns         |               |            |        |      |                            |             |    |             |             |     |       |
|-----------------|------------|---------------|------------|--------|------|----------------------------|-------------|----|-------------|-------------|-----|-------|
| Spigot O.D.     | Pipe       | Orifice Size  | Flow coeff | icient |      | Operating Pre<br>bar (psi) |             |    | wer<br>ting | Catalog     | Op  | tions |
|                 | connec-    |               |            |        |      | ma                         | X.          | (\ | V)          | number      |     |       |
| mm (inches)     | Lion       | mm (inches)   | Kv (m³/h)  | Cv     | min. | inert gases                | liquids     | ~  | =           |             | FKM | EPDM  |
| 2/2 NC - Norm   | ally close | d, VMQ Seals  |            |        |      |                            |             |    |             |             |     |       |
| 8 (0.31)        | -          | 2.7 (0.11)    | 0.23       | 0.27   | 0    | 5 (72.5)<br>[10/145]       | 5 (72.5)    | 6  | 6           | SCH283A003  | V   | Е     |
| 8 (0.31)        | -          | 3.4 (0.13)    | 0.30       | 0.35   | 0    | 3 (43.5)<br>[6/87]         | 3 (43.5)    | 6  | 6           | SCH283A004  | V   | Е     |
| 11 (0.43)       | -          | 5.5 (0.22)    | 0.55       | 0.64   | 0    | 1.5 (21.8)                 | 1 (14.5)    | 8  | 9           | SCH283A010  | -   | -     |
| -               | G 1/4      | 3.2 (0.13)    | 0.32       | 0.37   | 0    | 1.5 (21.8)                 | 1.5 (21.8)  | 8  | 9           | SCG283A013  | -   | -     |
| -               | G 1/4      | 5.5 (0.22)    | 0.55       | 0.64   | 0    | 1.5 (21.8)                 | 1 (14.5)    | 8  | 9           | SCG283A014  | -   | -     |
| 2/2 NC - Norm   | ally close | d, EPDM Seals | •          |        |      |                            |             |    |             |             |     |       |
| 11 (0.43)       | -          | 5.5 (0.22)    | 0.55       | 0.64   | 0    | 4.5 (65.3)                 | 1 (14.5)    | 8  | 9           | SCH283A008E | V   | -     |
| -               | G 1/4      | 3.2 (0.13)    | 0.32       | 0.37   | 0    | 10 (145)                   | 2.4 (34.81) | 8  | 9           | SCG283A011E | V   | -     |
| -               | G 1/4      | 5.5 (0.22)    | 0.55       | 0.64   | 0    | 4.5 (65.3)                 | 1 (14.5)    | 8  | 9           | SCG283A012E | V   | -     |
| -               | G 1/2      | 10 (0.394)    | 1.6        | 1.85   | 0    | 1.6 (23.2)                 | 0.25 (3.63) | 13 | 13          | SCG283C006E | V   | -     |
| 2/2 NO - Norm   | ally open, | VMQ Seals     |            |        |      |                            |             |    |             |             |     |       |
| 8 (0.31)        | -          | 3.4 (0.13)    | 0.30       | 0.35   | 0    | 3 (43.5)<br>[6/87]         | 3 (43.5)    | 6  | 6           | SCH283A016  | V   | Е     |
| 2/2 NO - Norm   | ally open, | , FKM Seals   |            |        |      |                            |             |    |             |             |     |       |
| 11 (0.43)       | -          | 5.5 (0.22)    | 0.55       | 0.64   | 0    | 1.5 (21.8)                 | 1 (14.5)    | 8  | 9           | SCH283A018V | -   | -     |
| 3/2 NC - Norm   | ally close | d, VMQ Seals  |            |        |      |                            |             |    |             |             |     |       |
| 8 (0.31)        | -          | 3.4 (0.13)    | 0.30       | 0.35   | 0    | 1 (14.5)                   | 1 (14.5)    | 6  | 6           | SCH383A003  | V   | Е     |
| 3/2 NO - Norm   | ally open, | FKM Seals     |            |        |      |                            |             |    |             |             |     |       |
| 8 (0.31)        | -          | 3.4 (0.13)    | 0.30       | 0.35   | 0    | 2.5 (36.2)                 | 2 (29)      | 6  | 6           | SCH383A004V | -   | -     |
| -               | G 1/2      | 9 (0.35)      | 1.6        | 1.85   | 0    | 0.4 (5.8)                  | -           | 13 | -*          | SCG383C006  | -   | -     |
| 3/2 NO - Norm   | ally open, | EPDM Seals    |            |        |      |                            |             |    |             |             |     |       |
| 8 (0.31)        | -          | 3.4 (0.13)    | 0.30       | 0.35   | 0    | 2.5 (36.2)                 | 2 (29)      | 6  | 6           | SCH383A004E | -   | -     |
| 3/2 U - Univers | sal, VMQ S | Seals         |            |        |      |                            |             |    |             |             |     |       |
| 11 (0.43)       | -          | 3.2 (0.12)    | 0.28       | 0.32   | 0    | 1.5 (21.8)                 | 1.5 (21.8)  | 8  | 9           | SCH383A007  | V   | Е     |
| -               | G 1/4      | 3.2 (0.12)    | 0.28       | 0.32   | 0    | 1.5 (21.8)                 | 1.5 (21.8)  | 8  | 9           | SCG383A008  | V   | E     |



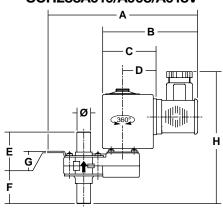
<sup>\*</sup> AC Version available only
[] Value for pressure with FKM and EPDM seals

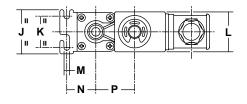
LEVER SOLENOID FLUID ISOLATION VALVE

#### **Dimensions: mm (inches)**




TYPE 01 Prefix "SC" Solenoid DIN 43650





**TYPE 02** Prefix "SC" Solenoid ISO 4400

## SCH283A003/A004/A016









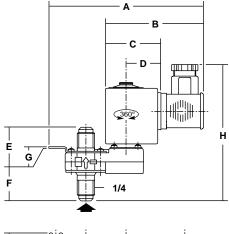
#### Pressure inlet:

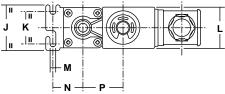
NC function: orifice 1 (type 01) or arrow on body (type 02) NO function: orifice 2 (type 01) or arrow on body (type 02)

| Туре | Prefix<br>Option | Catalog Number            | А               | В            | С            | D            | E              | F              | G              | н             | J            | К            | L            | М             | N            | Р            | Weight <sup>2</sup><br>kg |        |  |  |        |        |        |        |   |        |        |       |
|------|------------------|---------------------------|-----------------|--------------|--------------|--------------|----------------|----------------|----------------|---------------|--------------|--------------|--------------|---------------|--------------|--------------|---------------------------|--------|--|--|--------|--------|--------|--------|---|--------|--------|-------|
| 01   | sc               | SCH283A003/A004           | 94              | 64.5         | 33.5         | 21           | 58             |                |                | 97            | 26           | 16           | 25           |               | 10           | 33           | 0.170                     |        |  |  |        |        |        |        |   |        |        |       |
| 01   | 30               | SCH283A016                | (3.7)           | (3.7)        | (3.7)        | (3.7)        | (3.7)          | (3.7)          | (3.7)          | (3.7)         | (3.7)        | (3.7)        | (3.7)        | (3.7)         | (2.54)       | 54) (1.32)   | (0.83)                    | (2.28) |  |  | (3.82) | (1.02) | (0.63) | (0.98) | _ | (0.39) | (1.30) | 0.200 |
| 02   | SC               | SCH283A010/<br>A008E/018V | 121.5<br>(4.78) | 78<br>(3.07) | 43<br>(1.69) | 27<br>(1.06) | 16.5<br>(0.65) | 40.5<br>(1.59) | 1.2<br>(0.047) | 105<br>(4.13) | 35<br>(1.38) | 25<br>(0.98) | 32<br>(1.26) | 4.5<br>(0.18) | 23<br>(0.91) | 31<br>(1.22) | 0.285                     |        |  |  |        |        |        |        |   |        |        |       |

<sup>&</sup>lt;sup>2</sup> Including coil(s) and connector(s)

LEVER SOLENOID FLUID ISOLATION VALVE


#### **Dimensions: mm (inches)**




TYPE 01 Prefix "SC" Solenoid ISO 4400

TYPE 02 Prefix "SC" Solenoid ISO 4400

## SCG283A011/012/ 013/014/019V





## Pressure inlet:

NC function: arrow on body (type 01) or orifice 3 (type 02) NO function: arrow on body (type 01)

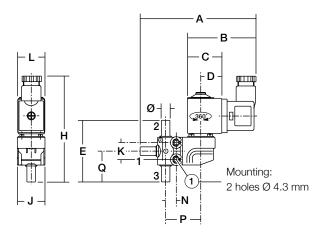
|         | SCG283C006                              |
|---------|-----------------------------------------|
|         | A                                       |
|         | В — В — — — — — — — — — — — — — — — — — |
| <u></u> | 2                                       |
| E       | H                                       |
|         | 3                                       |
| N M     | P L                                     |

| Ту |   | Prefix<br>Option | Catalog Number                    | Α               | В            | С            | D            | E              | F              | G              | н             | J            | К            | L            | М              | N             | Р            | Weight <sup>2</sup><br>kg |
|----|---|------------------|-----------------------------------|-----------------|--------------|--------------|--------------|----------------|----------------|----------------|---------------|--------------|--------------|--------------|----------------|---------------|--------------|---------------------------|
| 0  | 1 | SC               | SCG283A011E/<br>012E/013/014/019V | 121.5<br>(4.78) | 78<br>(3.07) | 43<br>(1.69) | 27<br>(1.06) | 16.5<br>(0.65) | 40.5<br>(1.59) | 1.2<br>(0.047) | 105<br>(4.13) | 35<br>(1.38) | 25<br>(0.98) | 32<br>(1.26) | 4.5<br>(0.177) | 23<br>(0.906) | 31<br>(1.22) | 0.285                     |
| 0  | 2 | SC               | SCG283C006E                       | 142.5<br>(5.61) | 84<br>(3.31) | 49<br>(1.93) | 28<br>(1.10) | 23.5<br>(0.93) | 61.5<br>(2.42) | 1.2<br>(0.047) | 128<br>(5.04) | -            | 30<br>(1.18) | 42<br>(1.65) | 5.5<br>(0.217) | 35<br>(1.38)  | 46<br>(1.81) | 0.57                      |

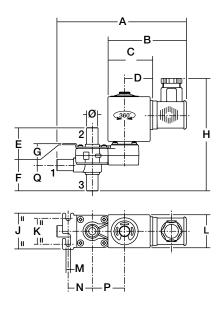
<sup>&</sup>lt;sup>2</sup> Including coil(s) and connector(s).

LEVER SOLENOID FLUID ISOLATION VALVE

#### **Dimensions: mm (inches)**




TYPE 01 Prefix "SC" Solenoid DIN 43650




TYPE 02 Prefix "SC" Solenoid ISO 4400

## SCH383A003 / A004V / A004E



## SCH383A007

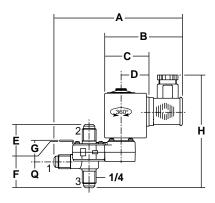


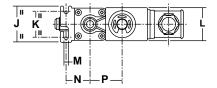
#### Pressure inlet:

NC function: orifice 2 (type 01) NO function: orifice 3 (type 01) U function: all orifices (type 02)

| Туре | Prefix<br>Option | Catalogue<br>number        | Α             | В              | С              | D            | E              | F              | G             | н             | J            | к            | L            | М             | N            | Р            | Q              | Weight2<br>kg |
|------|------------------|----------------------------|---------------|----------------|----------------|--------------|----------------|----------------|---------------|---------------|--------------|--------------|--------------|---------------|--------------|--------------|----------------|---------------|
| 01   | SC               | SCH383A003/A004V/<br>A004E | 111<br>(4.37) | 64.5<br>(2.54) | 33.5<br>(1.32) | 21<br>(0.83) | 58<br>(2.28)   | -              | -             | 97<br>(3.82)  | 26<br>(1.02) | 16<br>(0.63) | 25<br>(0.98) | -             | 10<br>(0.39) | 33<br>(1.30) | 29<br>(1.14)   | 0.200         |
| 02   | SC               | SCH383A007                 | 127<br>(5.0)  | 78<br>(3.07)   | 43<br>(1.69)   | 27<br>(1.06) | 16.5<br>(0.65) | 40.5<br>(1.59) | 1.2<br>(0.05) | 105<br>(4.13) | 35<br>(1.38) | 25<br>(0.98) | 32<br>(1.26) | 4.5<br>(0.18) | 23<br>(0.91) | 31<br>(1.22) | 19.5<br>(0.77) | 0.345         |

<sup>&</sup>lt;sup>2</sup> Including coil(s) and connector(s).

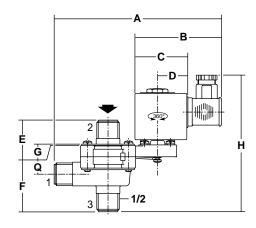

LEVER SOLENOID FLUID ISOLATION VALVES

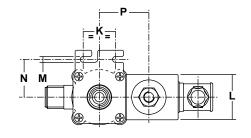

#### **Dimensions: mm (inches)**



TYPE 01 Prefix "SC" Solenoid ISO 4400

SCG383A008






TYPE 02 Prefix "SC" Solenoid ISO 4400

SCG383C006





| Туре | Prefix option | Catalogue<br>number | A             | В            | С            | D            | E              | F              | G             | Н             | J            | к            | L            | М             | N            | Р            | Q              | Weight <sup>2</sup><br>kg |
|------|---------------|---------------------|---------------|--------------|--------------|--------------|----------------|----------------|---------------|---------------|--------------|--------------|--------------|---------------|--------------|--------------|----------------|---------------------------|
| 01   | SC            | SCG383A008          | 127<br>(5.0)  | 78<br>(3.07) | 43<br>(1.69) | 27<br>(1.06) | 16.5<br>(0.65) | 44.5<br>(1.75) | 1.2<br>(0.05) | 109<br>(4.29) | 35<br>(1.38) | 25<br>(0.98) | 32<br>(1.26) | 4.5<br>(0.18) | 23<br>(0.91) | 31<br>(1.22) | 19.5<br>(0.77) | 0.345                     |
| 02   | SC            | SCG383C006          | 159<br>(6.26) | 84<br>(3.31) | 49<br>(1.93) | 28<br>(1.10) | 23.5<br>(0.93) | 61.5<br>(2.42) | 1.2<br>(0.05) | 128<br>(5.04) | -            | 30<br>(1.18) | 42<br>(1.65) | 5.5<br>(0.22) | 35<br>(1.38) | 46<br>(1.81) | 26.5<br>(1.04) | 0.51                      |

<sup>&</sup>lt;sup>2</sup> Including coil(s) and connector(s).

## **Options**

- Valves can also be supplied with FKM (fluoroelastomer) and EPDM (ethylene-propylene) seals.
- Plug with visual indication and peak voltage suppression or with cable length of 2m (78.7in)

### Installation

- The solenoid valves can be mounted in any position without affecting operation. For optimum performance mount solenoid vertical and upright
- Replacement coils are available: BMX: DC: 12 V, cat. no.: 43005158 /AC: 24 V, cat. no.: 43005161; 115 V, cat. no.: 43005162 AMX: DC: 12 V, cat. no.: 43005143/AC: 24 V, cat. no.: 43005146; 115 V, cat. no.: 43005147

01021GB-2019-R01

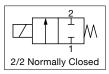
## PINCH VALVES, COMPACT 2-WAY SOLENOID

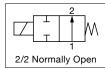
- The 284 Series are 2-Way normally closed and normally open solenoid operated pinch valves designed for use with highly aggressive or high-purity liquids in analytical and medical instrumentation, and industrial applications
- Hermetic separation of control mechanism and the fluid within the tubing prevents particulate contamination caused by friction of moving parts, assuring maximum purity of liquids
- Removable and rotatable electrical coils allow for easy installation and worry-free maintenance
- Bi-directional flow for exceptional versatility
- Available in a large range of body sizes to accommodate a wide variety of tubing sizes
- Meets all relevant CE directives, and is RoHS compliant
- Typical applications include:
  - Hemodialysis
  - Urinary Collection Systems
  - Intravenous (IV) Systems
  - Drug Dispensing

| Fluids*                                 | Temperature Range               |
|-----------------------------------------|---------------------------------|
| Air, Inert Gases, Water, Oil or Liquids | 0 °C to 50 °C (32 °F to 122 °F) |

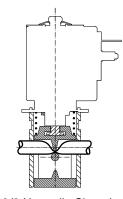
<sup>\*</sup> Ensure that the compatibility of the materials in contact with the fluids is verified

| General Valve Information* |                                                                                 |                                                                                         |  |  |  |  |  |  |  |  |
|----------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Body                       | Aluminum, anodized                                                              | POM (Graphite-reinforced polyacetal)                                                    |  |  |  |  |  |  |  |  |
| Pinch Mechanism            | POM (Graphite-reinforced polyacetal)                                            |                                                                                         |  |  |  |  |  |  |  |  |
| Others                     | Stainless Steel                                                                 |                                                                                         |  |  |  |  |  |  |  |  |
| Guide Tube                 | Nickel-plated brass                                                             |                                                                                         |  |  |  |  |  |  |  |  |
| Coil frame                 |                                                                                 | Galvanized steel                                                                        |  |  |  |  |  |  |  |  |
| Recommended<br>Tubing      | VMQ (silicone) (max. Hardness:<br>50 Shore A)<br>Tubing not supplied with valve | VMQ (silicone) (max. Hardness:<br>50 Shore A)<br>30cm (12in) tubing supplied with valve |  |  |  |  |  |  |  |  |

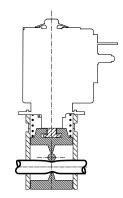

<sup>\*</sup> Ensure that the compatibility of the materials in contact with the fluids is verified


| Electrical Characteristics         |                                                                                                                       |                         |  |  |  |  |  |  |  |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|--|--|--|--|--|
|                                    | Aluminium Body                                                                                                        | POM Body                |  |  |  |  |  |  |  |
| Coil Insulation Class              | F                                                                                                                     | A                       |  |  |  |  |  |  |  |
| Connector                          | Spade plug; cable Ø4-6mm (0.16-<br>0.24in), Ø6-10mm (0.24-0.40in)                                                     | 305mm (12in) Lead Wires |  |  |  |  |  |  |  |
| Connector<br>Specification         | 4 W (DNX-4) DIN 43650, 9.4mm<br>(0.37in), industry standard B<br>6 W/13 W (AMX/FNX) ISO 4400/EN<br>175301-803, form A |                         |  |  |  |  |  |  |  |
| Electrical Safety                  | IEC 335                                                                                                               | IEC 335                 |  |  |  |  |  |  |  |
| Electrical Enclosure<br>Protection | Coil type 01 = IP65<br>Coil type 02-03 = IP65                                                                         | IP30 (EN 60529)         |  |  |  |  |  |  |  |
| Standard Voltages 1                | 12 VDC, 24 VDC                                                                                                        | 12 VDC, 24 VDC          |  |  |  |  |  |  |  |
| Power Consumption                  | 4 W, 9 W, 13 W                                                                                                        | 2.8 W                   |  |  |  |  |  |  |  |
| Response Time                      | < 20ms                                                                                                                | <10 ms                  |  |  |  |  |  |  |  |

<sup>1</sup> Other voltages on request


|                  |    | Powe | er Rati       | ngs                | Ambient     |           |          |            |
|------------------|----|------|---------------|--------------------|-------------|-----------|----------|------------|
| Prefix<br>Option |    |      | Hot/Cold<br>= | Temperature Ranges | Replacer    | nent Coil | Type 2   |            |
|                  | VA | VA   | W             | W                  | °C (°F)     | 12 VDC    | 24 VDC   |            |
|                  |    |      |               | 4                  |             | 43005268  | 43005269 | 01 (DNX-4) |
| sc               | _  |      | _             | 9                  | -10 to 60   | 43005143  | 43005144 | 02 (AMX)   |
| 30               | _  | _    | _             | 13                 | (14 to 140) | 43005316  | 43005317 | 03 (FNX)   |
|                  |    |      |               | 2.8                |             | -         | -        | -          |

<sup>&</sup>lt;sup>2</sup> Refer to the dimensional drawings on the following page







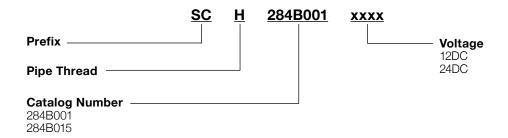



2/2 Normally Closed

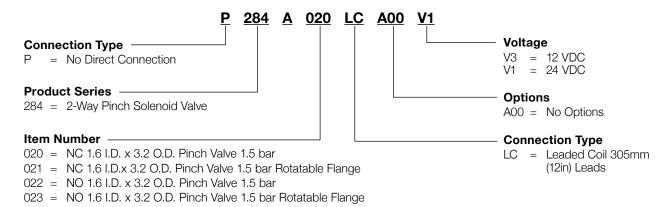


2/2 Normally Open




# ASCO<sup>TM</sup> MINIATURE SOLENOID VALVES PINCH VALVES, COMPACT 2-WAY SOLENOID

| Specification | ons           |         |        |                     |              |         |        |                     |                    |                    |  |  |
|---------------|---------------|---------|--------|---------------------|--------------|---------|--------|---------------------|--------------------|--------------------|--|--|
| Tube I.D.     | Tube O.D.     | Pinch   | O      | perating Properties |              |         | wer    |                     | Catalog Numbe      | r                  |  |  |
|               |               | Force   |        | ma                  | ax.          | ка      | ting   |                     | PC                 | ОМ                 |  |  |
| mm (inches)   | mm (inches)   | daN     | min.   | air, inert<br>gas   | liquids      | w       |        | Aluminium           | 24 VDC             | 12 VDC             |  |  |
| 2/2 NC - Nori | mally Closed  |         |        |                     |              |         |        |                     |                    |                    |  |  |
| 0.76 (0.030)  | 1.65 (0.065)  | 0.18    | 0      | 0.8 (11.6)          | 0.8 (11.6)   | -       | 4      | SCH284B001          | -                  | -                  |  |  |
| 1.02 (0.040)  | 2.16 (0.085)  | 0.22    | 0      | 0.8 (11.6)          | 0.8 (11.6)   | -       | 4      | SCH284B002          | -                  | -                  |  |  |
| 1.57 (0.062)  | 3.18 (0.125)  | 0.28    | 0      | 0.8 (11.6)          | 0.8 (11.6)   | -       | 4      | SCH284B003          | -                  | -                  |  |  |
| 1.98 (0.078)  | 3.18 (0.125)  | 0.25    | 0      | 0.8 (11.6)          | 0.8 (11.6)   | -       | 4      | SCH284B004          | -                  | -                  |  |  |
| 2.7 (0.106)   | 4.9 (0.193)   | 0.65    | 0      | 0.8 (11.6)          | 0.8 (11.6)   | -       | 9      | SCH284A005          | -                  | -                  |  |  |
| 4.8 (0.189)   | 7.9 (0.311)   | 1.1     | 0      | 0.8 (11.6)          | 0.8 (11.6)   | -       | 13     | SCH284B006          | -                  | -                  |  |  |
| 6.4 (0.252)   | 9.5 (0.374)   | 1.4     | 0      | 0.8 (11.6)          | 0.8 (11.6)   | -       | 13     | SCH284B007          | -                  | -                  |  |  |
| 1.6 (0.063)   | 3.2 (0.126)   | 0.28    | 0      | 1.5 (21.8)          | 1.5 (21.8)   | -       | 2.8    | -                   | P284A020LCA00V1    | P284A020LCA00V     |  |  |
| 1.6 (0.063)   | 3.2 (0.126)   | 0.28    | 0      | 1.5 (21.8)          | 1.5 (21.8)   | -       | 2.8    | -                   | P284A021LCA00V1 2) | P284A021LCA00V3    |  |  |
| 2) P284A021LC | A00V1/P284A02 | 1LCA00V | 3 = Th | e flange is ro      | tatable with | 90° (   | please | see "Pic. 2" on fol | lowing page)       |                    |  |  |
| 2/2 NO - Nori | mally Open    |         |        |                     |              |         |        |                     |                    |                    |  |  |
| 0.76 (0.030)  | 1.65 (0.065)  | 0.18    | 0      | 0.8 (11.6)          | 0.8 (11.6)   | -       | 4      | SCH284B009          | -                  | -                  |  |  |
| 1.02 (0.040)  | 2.16 (0.085)  | 0.22    | 0      | 0.8 (11.6)          | 0.8 (11.6)   | -       | 4      | SCH284B010          | -                  | -                  |  |  |
| 1.57 (0.062)  | 3.18 (0.125)  | 0.28    | 0      | 0.8 (11.6)          | 0.8 (11.6)   | -       | 4      | SCH284B011          | -                  | -                  |  |  |
| 1.98 (0.078)  | 3.18 (0.125)  | 0.25    | 0      | 0.8 (11.6)          | 0.8 (11.6)   | -       | 4      | SCH284B012          | -                  | -                  |  |  |
| 2.7 (0.106)   | 4.9 (0.193)   | 0.65    | 0      | 0.8 (11.6)          | 0.8 (11.6)   | -       | 9      | SCH284A013          | -                  | -                  |  |  |
| 4.8 (0.189)   | 7.9 (0.311)   | 1.1     | 0      | 0.8 (11.6)          | 0.8 (11.6)   | -       | 13     | SCH284B014          | -                  | -                  |  |  |
| 6.4 (0.252)   | 9.5 (0.374)   | 1.4     | 0      | 0.8 (11.6)          | 0.8 (11.6)   | -       | 13     | SCH284B015          | -                  | -                  |  |  |
| 1.6 (0.063)   | 3.2 (0.126)   | 0.28    | 0      | 1.5 (21.8)          | 1.5 (21.8)   | - 2.8 - |        | -                   | P284A022LCA00V1    | P284A022LCA00V3    |  |  |
| 1.6 (0.063)   | 3.2 (0.126)   | 0.28    | 0      | 1.5 (21.8)          | 1.5 (21.8)   | -       | 2.8    | -                   | P284A023LCA00V1 2) | P284A023LCA00V3 2) |  |  |


<sup>2)</sup> P284A023LCA00V1/P284A023LCA00V3 = The flange is rotatable with 90° (please see "Pic. 2" on following pages)

PINCH VALVES, COMPACT 2-WAY SOLENOID

## How to Order Aluminium body



## How to Order POM Body



#### **Options**

- Flexible tubes having to use an external guiding device for optimum support (see dimensions):
  - With an outside diameter lower than 2.2mm (0.087in) (catalog numbers SCH284B001 to ..B004)
  - With an outside diameter lower than 3.5mm (0.138in) (catalog number **SCH284A005**)
  - With an outside diameter lower than 6mm (0.236in) (catalog numbers SCH284B006 and ..007)
- · Contact us for information regarding the usage of different tubing other than those recommended
- Plug with visual indication and peak voltage suppression or with cable length of 2m (78.7in)

#### Installation

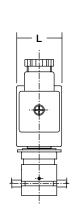
- The solenoid valves can be mounted in any position without affecting operation, however, for optimum performance it is recommended that they be fitted with the solenoid operator at the top
- Fixing plate built in between the body and the coil for assembly in a bank on a base plate
- Flexible tubes are not included with valve
- In case the tubing is not placed in its seat, the solenoid valve could operate incorrectly.

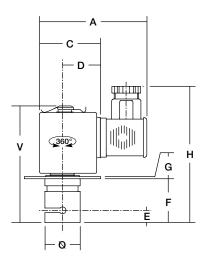
PINCH VALVES, COMPACT 2-WAY SOLENOID

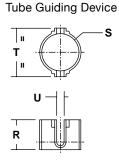
#### **Dimensions: mm (inches)**

Type 01

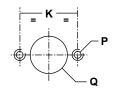
Prefix "SC" solenoidd IEC 335/DIN 43650



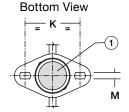


Type 01: SCH284B001/002/003/004/ 009/010/011/012



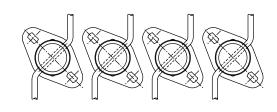

Prefix "SC" solenoid IEC 335/ISO 4400 **IP65** 


Type 02: SCH284A005/A013 Type 03: SCH284B006/B007/B014/B015









Arrangement for Mounting



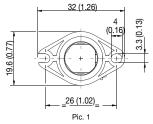
1 Impulse Manual Operator

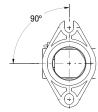


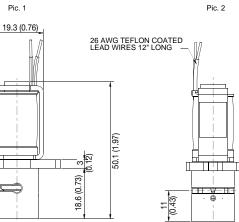
Example of Banked Assembly



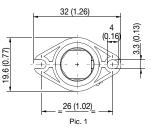
|      |                  |                                                |              |                |                |              |                |                |               |              |                |              |               |    |                |                |              |              |               |                |                     | Tube Guidi        | ng |
|------|------------------|------------------------------------------------|--------------|----------------|----------------|--------------|----------------|----------------|---------------|--------------|----------------|--------------|---------------|----|----------------|----------------|--------------|--------------|---------------|----------------|---------------------|-------------------|----|
| Туре | Prefix<br>Option | Catalog<br>Number                              | ø            | Α              | С              | D            | E              | F              | G             | н            | к              | L            | М             | Р  | Q              | R              | s            | т            | U             | v              | Weight <sup>1</sup> | Catalog<br>Number | ٧  |
| 01   | SC               | SCH284B001/002<br>/003/004/009<br>/010/011/012 | 16<br>(0.63) | 49.5<br>(1.95) | 23.5<br>(0.93) | 15<br>(0.60) | 11<br>(0.43)   | 20<br>(0.79)   | 1 (0.04)      | 66<br>(2.60) | 24<br>(0.95)   | 17<br>(0.67) | 3.3<br>(0.13) | МЗ | 16.5<br>(0.65) | 10.7<br>(0.42) | 16<br>(0.63) | 24<br>(0.95) | 2.2<br>(0.09) | 51.2<br>(2.02) | 0.06                | C140094           |    |
| 02   | SC               | SCH284A005/<br>A013                            | 25<br>(0.98) | 78<br>(3.07)   | 43<br>(1.69)   | 27<br>(1.06) | 17.5<br>(0.69) | 32<br>(1.26)   | 1.5<br>(0.06) | 99<br>(3.90) | 39<br>(1.54)   | 32<br>(1.26) | 4.5<br>(0.18) | M4 | 25.5<br>(1.00) | 14<br>(0.55)   | 25<br>(0.98) | 33<br>(1.30) | 3.2<br>(0.13) | 82.5<br>(3.25) | 0.28                | C140095           |    |
| 03   | SC               | SCH284B006/<br>B007<br>/B014/B015              | 30<br>(1.18) | 84<br>(3.31)   | 49<br>(1.93)   | 28<br>(1.10) | 24.5<br>(0.96) | 43.5<br>(1.71) | 1.5<br>(0.06) | 99<br>(3.90) | 45.5<br>(1.80) | 42<br>(1.65) | 4.5<br>(0.18) | M4 | 30.5<br>(1.20) | 24<br>(0.94)   | 30<br>(1.18) | 39<br>(1.54) | 6<br>(0.24)   | 99<br>(3.90)   | 0.47                | C140096           | Γ  |

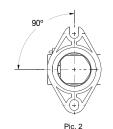

<sup>&</sup>lt;sup>1</sup> Including coil(s) and connectors

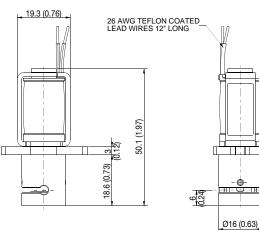

g Device Weight1 kg 0.005 0.009 0.015


PINCH VALVES, COMPACT 2-WAY SOLENOID

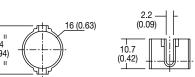
### **Dimensions: mm (inches)**


## 2/2 Normally Closed



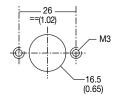







#### 2/2 Normally Open








### **Tube Guiding Device**



### **Arrangement for Wall-fitting**

Ø16 (0.63)



| Catalog Number     | Weight |
|--------------------|--------|
| Catalog Nullibel   | kg     |
| P284A020LCA00V1/V3 |        |
| P284A021LCA00V1/V3 | 0.04   |
| P284A022LCA00V1/V3 | 0.04   |
| P284A023LCA00V1/V3 |        |

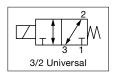
| Tube Guiding Device |        |  |  |  |  |  |  |  |  |
|---------------------|--------|--|--|--|--|--|--|--|--|
| Catalog             | Weight |  |  |  |  |  |  |  |  |
| Number              | kg     |  |  |  |  |  |  |  |  |
| 25978-01            | 0.005  |  |  |  |  |  |  |  |  |

PINCH VALVES, COMPACT 3-WAY SOLENOID

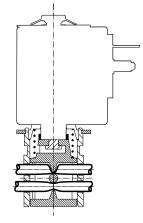
- The 384 Series is a 3-Way universal solenoid-operated pinch valve designed for use with highly aggressive or high-purity liquids in analytical and medical instrumentation, and industrial applications
- Hermetic separation of control mechanism and the fluid within the tubing prevents particulate contamination caused by friction of moving parts, assuring maximum purity of liquids
- Available in a large range of body sizes to accommodate a wide variety of tubing sizes
- Removable and rotatable electrical coils allow for easy installation and worry-free maintenance
- Bi-directional flow for exceptional versatility
- Meets all relevant CE directives, and is RoHS compliant
- Typical applications include:
  - Hemodialysis
  - Urinary Collection Systems,
  - Intravenous (IV) Systems
  - Drug Dispensing

| Fluids*                                 | Temperature Range               |
|-----------------------------------------|---------------------------------|
| Air, Inert Gases, Water, Oil or Liquids | 0 °C to 50 °C (32 °F to 122 °F) |

<sup>\*</sup> Ensure that the compatibility of the materials in contact with the fluids is verified

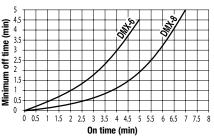

| General Valve Information* |                                                                                   |                                                                                      |  |  |  |  |  |  |
|----------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Body                       | Aluminum, anodized                                                                | POM (Graphite-reinforced polyacetal)                                                 |  |  |  |  |  |  |
| Pinch Mechanism            | POM (Graphite-reinforced polyacetal)                                              |                                                                                      |  |  |  |  |  |  |
| Others                     | Stainless Steel                                                                   |                                                                                      |  |  |  |  |  |  |
| Guide Tube                 | Nickel-plated Brass                                                               |                                                                                      |  |  |  |  |  |  |
| Coil frame                 |                                                                                   | Galvanized steel                                                                     |  |  |  |  |  |  |
| Recommended<br>Tubing      | VMQ (silicone) (max. hardness:<br>50 Shore A)<br>(Tubing not supplied with valve) | VMQ (silicone) (max. Hardness: 50 Shore A)<br>30cm (12in) tubing supplied with valve |  |  |  |  |  |  |

| Electrical Characteristics         |                                                                                                                        |                         |  |  |  |  |  |  |  |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|--|--|--|--|--|
|                                    | Aluminium body                                                                                                         | POM body                |  |  |  |  |  |  |  |
| Coil Insulation Class              | F                                                                                                                      | F                       |  |  |  |  |  |  |  |
| Connector                          | Spade plug;<br>cable Ø4-6mm (0.16-0.24in), Ø6-10mm<br>(0.24-0.40in)                                                    |                         |  |  |  |  |  |  |  |
| Connector Specification            | 4 W/8 W/6 W (DMX); DIN 43650, 9.4 mm,<br>industry standard B;<br>6 W/13 W (AMX/FNX); ISO 4400/EN<br>175301-803, form A | 305mm (12in) Lead Wires |  |  |  |  |  |  |  |
| Electrical Safety                  | IEC 335                                                                                                                | IEC 335                 |  |  |  |  |  |  |  |
| Electrical Enclosure<br>Protection | Coil type 01 = IP65 /<br>Coil type 02-03 = IP65                                                                        | IP30 (EN 60529)         |  |  |  |  |  |  |  |
| Standard Voltages1                 | 12 VDC, 24 VDC                                                                                                         | 12 VDC, 24 VDC          |  |  |  |  |  |  |  |
| Power Consumption                  | 4W, 6W, 8W, 9W, 13W                                                                                                    | 3.5W                    |  |  |  |  |  |  |  |
| Response Time                      | < 20ms                                                                                                                 | < 10ms                  |  |  |  |  |  |  |  |


<sup>1</sup> Other voltages on request

|                  | Power Ratings               |    |   |          | Ambient                  |            |            |            |  |
|------------------|-----------------------------|----|---|----------|--------------------------|------------|------------|------------|--|
| Prefix<br>Option | Inruch   Holding   Hot/Cold |    |   | Hot/Cold | Temperature<br>Ranges    | ·          |            |            |  |
|                  | VA                          | VA | W | W        | °C (°F)                  | 12 VDC     | 24 VDC     |            |  |
|                  |                             |    |   | 4        |                          | 43005268   | 43005269   |            |  |
|                  |                             |    |   | 8        | -10 to 60<br>(14 to 140) | 500701-001 | 500701-002 | 01 (DNX-4) |  |
| SC               | -                           | -  | - | 6        |                          | 500701-003 | 500701-004 |            |  |
|                  |                             |    |   | 9        | (14 to 140)              | 43005143   | 43005144   | 02 (AMX)   |  |
|                  |                             |    |   | 13       |                          | 43005316   | 43005317   | 03 (FNX)   |  |

<sup>&</sup>lt;sup>2</sup> Refer to the dimensional drawings on the following page

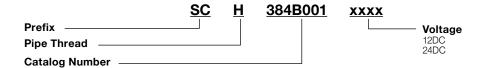







## USE IN INTERMITTENT SERVICE

Minimum waiting time between each application of power




PINCH VALVES, COMPACT 3-WAY SOLENOID

| Specificat   | Specifications |                |                              |             |            |   |     |                         |                              |                              |  |
|--------------|----------------|----------------|------------------------------|-------------|------------|---|-----|-------------------------|------------------------------|------------------------------|--|
| Tube I.D.    | Tube O.D.      | Pinch<br>Force | Operating Pressure bar (psi) |             |            |   | wer | Catalog Number          |                              |                              |  |
|              |                |                | min.                         | ma          |            |   |     | DOM                     | l body                       |                              |  |
| mm (inches)  | mm (inches)    | daN            | 111111.                      | inert gases | liquids    |   | W   | Aluminium body          | 24 VDC                       | 12 VDC                       |  |
| 0.76 (0.030) | 1.65 (0.065)   | 0.12           | 0                            | 0.8 (11.6)  | 0.8 (11.6) | - | 4   | SCH384B004              | -                            | -                            |  |
| 1.02 (0.040) | 2.16 (0.085)   | 0.18           | 0                            | 0.8 (11.6)  | 0.8 (11.6) | - | 4   | SCH384B001              | -                            | -                            |  |
| 1.57 (0.062) | 3.18 (0.125)   | 0.22           | 0                            | 0.8 (11.6)  | 0.8 (11.6) | - | 8   | SCH384B0023             | -                            | -                            |  |
| 1.98 (0.078) | 3.18 (0.125)   | 0.18           | 0                            | 0.8 (11.6)  | 0.8 (11.6) | - | 6   | SCH384B003 <sup>3</sup> | -                            | -                            |  |
| 3.4 (0.132)  | 4.7 (0.183)    | 0.4            | 0                            | 0.8 (11.6)  | 0.8 (11.6) | - | 9   | SCH384A005              | -                            | -                            |  |
| 4.8 (0.187)  | 7.9 (0.313)    | 0.85           | 0                            | 0.8 (11.6)  | 0.8 (11.6) | - | 13  | SCH384B006              | -                            | -                            |  |
| 6.4 (0.250)  | 9.5 (0.375)    | 1.1            | 0                            | 0.8 (11.6)  | 0.8 (11.6) | - | 13  | SCH384B007              | -                            | -                            |  |
| 1.6 (0.063)  | 3.2 (0.126)    | 0.22           | 0                            | 1.5 (21.8)  | 1.5 (21.8) | - | 3.5 | -                       | P384A024LCA00V1              | P384A024LCA00V3              |  |
| 1.6 (0.063)  | 3.2 (0.126)    | 0.22           | 0                            | 1.5 (21.8)  | 1.5 (21.8) | - | 3.5 | -                       | P384A025LCA00V1 <sup>4</sup> | P384A025LCA00V3 <sup>4</sup> |  |

<sup>3</sup> Observe the minimum of time stated, see graph above

## How to Order Aluminum body

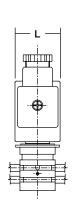


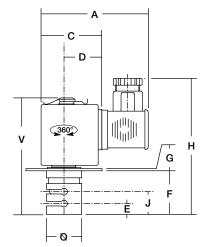
#### **How to Order POM Body** 384 A 024 LC A00 V3 Voltage Connection Type -V3 = 12 VDC No Direct Connection V1 = 24 VDC **Product Series -Options** 384 = 3-Way Pinch Solenoid Valve A00 = No Options Item Number **Connection Type** 024 = 3W 1.6 I.D. x 3.2 O.D. Pinch Valve 1.5 bar LC = Leaded Coil 305mm 025 = 3W 1.6 I.D. x 3.2 O.D. Pinch Valve 1.5 bar Rotatable Flange (12in) Leads

ASCO

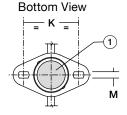
<sup>&</sup>lt;sup>4</sup> The flange is rotatable with 90° (please see "Pic. 2" on following page)

PINCH VALVES, COMPACT 3-WAY SOLENOID


#### Dimensions (Aluminium body): mm (inches)




Prefix "SC" solenoidd IEC 335/DIN 43650


IP65

Type 01: SCH384B001/0002/003/004

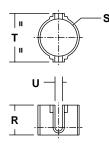


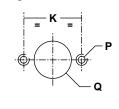




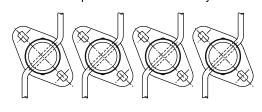





Prefix "SC" solenoid IEC 335/ISO 4400


IP65

Type 02: SCH384A005 Type 03: SCH384B006/B007


#### **Tube Guiding Device**

Arrangement for Wall-Fitting





#### **Example of Banked Assembly**

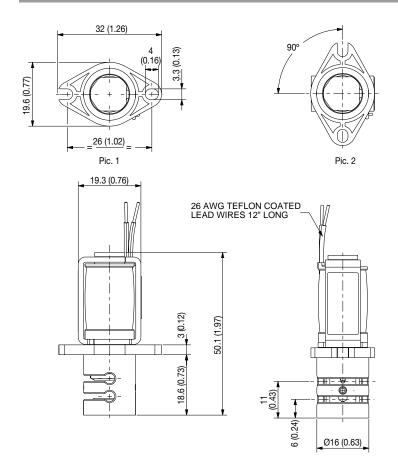


| Туре | Prefix<br>Option | Catalog<br>Number          | Ø            | A              | С              | D            | E              | F              | G             | Н            | K              | L            | М             | Р  | Q              | R              | s            | Т            | U             | V              | Weight1 |
|------|------------------|----------------------------|--------------|----------------|----------------|--------------|----------------|----------------|---------------|--------------|----------------|--------------|---------------|----|----------------|----------------|--------------|--------------|---------------|----------------|---------|
| 01   | sc               | SCH384B001/002<br>/003/004 | 16<br>(0.63) | 49.5<br>(1.95) | 23.5<br>(0.92) | 15<br>(0.59) | 11<br>(0.24)   | 20<br>(0.79)   | 1 (0.04)      | 66<br>(2.60) | 24<br>(0.43)   | 17<br>(0.67) | 3.3<br>(0.13) | МЗ | 16.5<br>(0.65) | 10.7<br>(0.42) | 16<br>(0.63) | 24<br>(0.94) | 2.2<br>(0.09) | 51.2<br>(2.02) | 0.06    |
| 02   | sc               | SCH384A005                 | 25<br>(0.98) | 78<br>(3.07)   | 43<br>(1.69)   | 27<br>(1.06) | 17.5<br>(0.41) | 32<br>(1.26)   | 1.5<br>(0.06) | 99<br>(3.90) | 39<br>(1.54)   | 32<br>(1.26) | 3.3<br>(0.18) | M4 | 25.5<br>(1.00  | 14<br>(0.55)   | 25<br>(0.98) | 33<br>(1.30) | 3.2<br>(0.12) | 82.5<br>(3.25) | 0.30    |
| 03   | SC               | SCH384B006/<br>B007        | 30<br>(1.18) | 84<br>(3.31)   | 49<br>(1.93)   | 28<br>(1.10) | 24.5<br>(0.96) | 43.5<br>(1.71) | 1.5<br>(0.06) | 99<br>(3.90) | 45.5<br>(1.79) | 42<br>(1.65) | 4.5<br>(0.18) | M4 | 30.5<br>(1.20) | 24<br>(0.94)   | 30<br>(1.18) | 39<br>(1.54) | 6<br>(0.24)   | 99<br>(3.90)   | 0.45    |

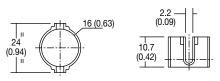
| Tube Guiding Device |         |  |  |  |  |  |  |
|---------------------|---------|--|--|--|--|--|--|
| Catalog             | Weight1 |  |  |  |  |  |  |
| Number              | kg      |  |  |  |  |  |  |
| C140094             | 0.005   |  |  |  |  |  |  |
| C140095             | 0.009   |  |  |  |  |  |  |
| C140096             | 0.015   |  |  |  |  |  |  |

## **Options (Aluminium body)**

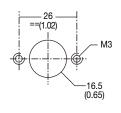
- Flexible tubes having to use an external guiding device for optimum support (see dimensions):
  - With an outside diameter lower than 2.2mm (0.087in) (catalog numbers SCH384B001 to ..B004)
  - With an outside diameter lower than 3.5mm (0.138in) (catalog number SCH384A005)
  - With an outside diameter lower than 6mm (0.240in) (catalog numbers SCH384B006 and ..007)
  - Contact us for information regarding the usage of different tubing other than those recommended
- Plug with visual indication and peak voltage suppression or with cable length of 2m (78.7in)


### Installation (Aluminium body)

- The solenoid valves can be mounted in any position without affecting operation, however, for optimum performance it is recommended that they be fitted with the solenoid operator at the top
- Fixing plate built in between the body and the coil for assembly in a bank on a base plate
- Flexible tubes are not included in our supply
- In case the tubing is not placed in its seat, the solenoid valve could operate incorrectly.


<sup>&</sup>lt;sup>1</sup> Including coil(s) and connectors

PINCH VALVES, COMPACT 3-WAY SOLENOID


## Dimensions (POM body): mm (inches)



#### **Tube Guiding Device**



#### Arrangement for Wall-fitting

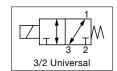


| Catalog Number     | Weight <sup>1</sup> |
|--------------------|---------------------|
| Catalog Namber     | kg                  |
| P384A024LCA00V1/V3 | 0.04                |
| P384A025LCA00V1/V3 | 0.04                |

|  | Tube Gui | ding Device |  |  |  |  |  |
|--|----------|-------------|--|--|--|--|--|
|  | Catalog  | Weight1     |  |  |  |  |  |
|  | Number   | kg          |  |  |  |  |  |
|  | 25978-01 | 0.005       |  |  |  |  |  |

1 Including coil(s) and connectors

### **Options (POM body)**

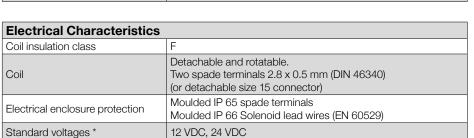

- Flexible tubes having to use an external guiding device for optimum support (see dimensions):
- With an outside diameter lower than 2.2mm (0.087in)
- Contact us for information regarding the usage of different tubing other than those recommended

### Installation (POM body)

- The solenoid valves can be mounted in any position without affecting operation, however, for optimum performance it is recommended that they be fitted with the solenoid operator at the top
- Fixing plate built in between the body and the coil for assembly in a bank on a base plate
- In case the tubing is not placed in its seat, the solenoid valve could operate incorrectly.

#### ROCKER MECHANISM, FLUID ISOLATION VALVES

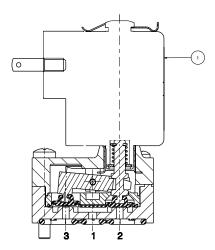
- Rocker isolation valves are designed for use with neutral or highly aggressive liquids in analytical instrumentation
- Special rocker mechanism, combined with a separating diaphragm, prevents heat transfer to the fluid and eliminates the sticking effect of the valve seat
- Hermetic separation of control mechanism prevents particulate contamination caused by friction of moving parts, assuring maximum purity of liquid samples
- Excellent self-draining capability and easy-to-flush lowvolume internal cavity make these valves ideal in application where cross-contamination must be minimized
- Removable and rotatable electrical coils allow for easy installation and worry-free maintenance
- Meets all relevant CE directives
- Typical applications include:
  - In-vitro Diagnostics
  - Hematology
  - DNA Sequencing
  - Surgical Fluid Management






| Fluids*          | Temperature Range             | Seal Materials*                                        |
|------------------|-------------------------------|--------------------------------------------------------|
| liquids or gases | 10°C to +80°C (14°F to 176°F) | FFKM (perfluoroelastomer) or EPDM (ethylene-propylene) |

<sup>\*</sup> Ensure that the compatibility of the materials in contact with the fluids is verified

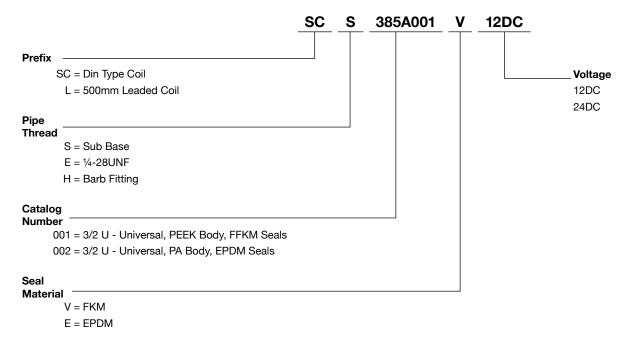

| General Valve Information |                             |                                                                                    |  |  |  |  |  |  |  |
|---------------------------|-----------------------------|------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                           | PEEK Body                   | PA Body                                                                            |  |  |  |  |  |  |  |
| Body                      | PEEK                        | PA (polyamide 12)                                                                  |  |  |  |  |  |  |  |
| Differential pressure     |                             | See «Specifications» [1 bar =100 kPa] 0.7 bar abs. (vacuum on polyamide body only) |  |  |  |  |  |  |  |
| Maximum viscosity         | 37 cSt (mm <sup>2</sup> /s) |                                                                                    |  |  |  |  |  |  |  |
| Response time             | 20 ms                       |                                                                                    |  |  |  |  |  |  |  |
| Internal volume           | < 67 µl                     |                                                                                    |  |  |  |  |  |  |  |



<sup>\*</sup> Other voltages on request.

|               |        | Power | ratings |          | Ambient                            | B I      |                  |   |
|---------------|--------|-------|---------|----------|------------------------------------|----------|------------------|---|
| Prefix option | Inrush | Hold  | ing     | Hot/Cold | temperature range Replacement coil |          | Replacement coil |   |
| option        | VA     | VA    | VA W W  |          | °C (°F)                            | 12 VDC   | 24 VDC           |   |
| SC            | -      | -     | -       | 4        | -10 to 60 (14 to 140)              | 43005268 | 43005269         | 1 |
| L             | -      | -     | -       | 4        | -10 to 60 (14 to 140)              | 43005408 | 43005430         | 2 |

<sup>(1)</sup> Refer to the dimensional drawings on the following page.






ROCKER MECHANISM, FLUID ISOLATION VALVES

| Specifications       | Specifications |                           |       |         |      |                                 |             |            |   |                   |                |                   |         |      |  |      |  |  |  |      |  |     |      |
|----------------------|----------------|---------------------------|-------|---------|------|---------------------------------|-------------|------------|---|-------------------|----------------|-------------------|---------|------|--|------|--|--|--|------|--|-----|------|
|                      | Orifice        | Orifice Flow              |       |         | C    | Operating Pressure<br>bar (psi) |             |            |   | October N. states |                | Seal<br>Materials |         |      |  |      |  |  |  |      |  |     |      |
| Pipe Size            | Size           | Coefficient               |       | ent     |      | max                             | may (PS)    |            |   |                   | Catalog Number |                   |         |      |  |      |  |  |  |      |  |     |      |
| Pipe Size            |                |                           |       |         | min. | Gases (*)                       | Liquids (*) | (W)        |   | ( <b>vv</b> )     |                | (44)              |         | (**) |  | (**) |  |  |  | (**) |  | FKM | EPDM |
|                      | (mm)           | Kv<br>(m <sup>3</sup> /h) | Cv    | (I/min) |      | =                               | =           | ~          | = | PEEK Body         | PA Body        |                   | LI DIVI |      |  |      |  |  |  |      |  |     |      |
| Pad mount            |                |                           |       |         |      |                                 |             |            |   | SCS385A001        |                |                   |         |      |  |      |  |  |  |      |  |     |      |
| 1/4" - 28 UNF thread | 1.5            | 0.03                      | 0.034 | 0.5     | 0    | 2.4 (34.8) 2.4                  | 2.4 (34.8)  | 2.4 (34.8) | 4 | SCE385A001        |                | V                 | E       |      |  |      |  |  |  |      |  |     |      |
| Barbed fitting       |                |                           |       |         |      |                                 |             |            |   | SCH385A001        |                |                   |         |      |  |      |  |  |  |      |  |     |      |
| Pad mount            |                |                           |       |         |      |                                 |             |            |   |                   | SCS385A002E    |                   |         |      |  |      |  |  |  |      |  |     |      |
| 1/4" - 28 UNF thread | 1.5            | 0.03                      | 0.034 | 0.5     | 0    | 2 (29.0)                        | 2 (29.0)    | -          | 4 |                   | SCE385A002E    | -                 | -       |      |  |      |  |  |  |      |  |     |      |
| Barbed fitting       |                |                           |       |         |      |                                 |             |            |   |                   | SCH385A002E    | ]                 |         |      |  |      |  |  |  |      |  |     |      |

#### **How To Order**

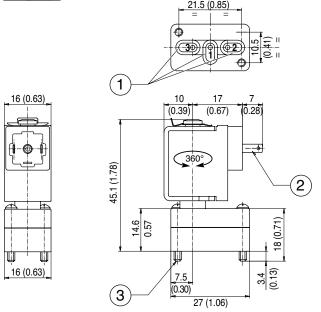


#### **Options**

• Connector size 15, catalogue number 88143581

#### Installation

- The solenoid valves can be mounted in any position without affecting operation.
- Can be used for the following functions, depending on how the ports are connected:
- Installation/maintenance instructions are included with each valve.



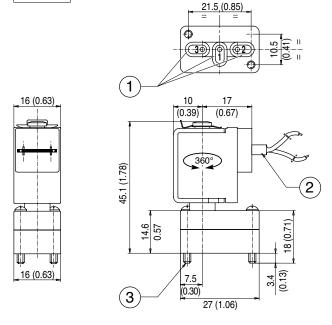

ROCKER MECHANISM, FLUID ISOLATION VALVES

#### **Dimensions: mm (inches)**



**Type 01**Solenoid with spade terminals (SC)
EN 60529
IP 65




- ① 1 mounting pad seal.
- ② Coil with 2 Faston-type terminals 2.8 x 0.5 (DIN 46340).
- 3 Mounting: 2 screws M2.5 x 18.

| Туре | Prefix option | Weight (1)<br>kg |
|------|---------------|------------------|
| 01   | SC            | 0.04             |

(1) Including coil, without connector.

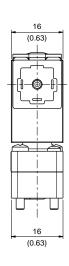


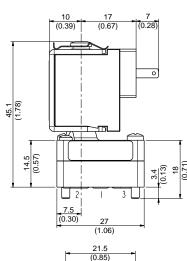
Type 02 Leaded Coil (L) 24 AWG, lead wires: 500 mm (19.7 in) long IP 66

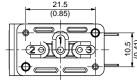


- ① 1 mounting pad seal.
- ② Coil with 24 AWG, lead wires: 500mm (19.7in) long
- 3 Mounting: 2 screws M2.5 x 18.

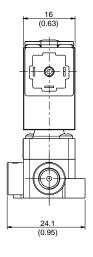
| Туре | Prefix option | Weight (1)<br>kg |  |  |
|------|---------------|------------------|--|--|
| 02   | L             | 0.04             |  |  |

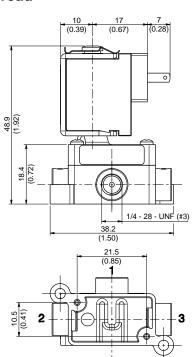

(1) Including coil, without connector.


ROCKER MECHANISM, FLUID ISOLATION VALVES

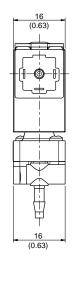

#### Dimensions: mm (inches)

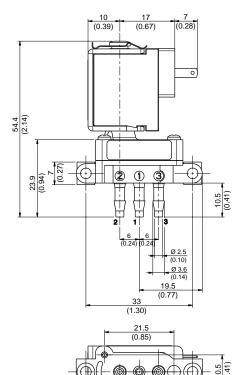



#### **Pad Mount**







#### 1/4" - 28 UNF thread



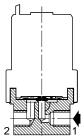


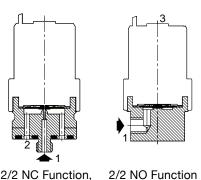
#### **Barbed Fitting**





#### GENERAL SERVICE VALVES, FLAT SPRING SOLENOID


- The 065 Series 2-Way and 3-Way manifold mount valves are designed for analytical and medical applications where high gas flow is required
- Flat spring technology ensures no contamination of gases (no friction)
- The valves have a service life of more than 1 billion cycles when used with inert gases
- Very short response times allow these valves to be used in applications that require precise media control
- Small form factor saves valuable space in portable devices
- Available in a variety of versions for a wide range of applications: threaded connections or pad-mount for installation on multiple manifolds
- Meets all relevant CE directives, and is RoHS compliant
- Typical applications include:
  - Respiratory Therapy
  - Patient Monitoring


Fluids\*

Air, Inert Gases

- Compression Therapy (DVT)
- Industrial Air Monitoring

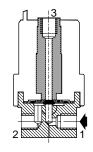
| 2/2 Normally Closed | B |
|---------------------|---|
| 2/2 Normally Open   | 6 |
| 2/2 Normany Open    |   |
|                     |   |
| 3/2 Normally Closed |   |



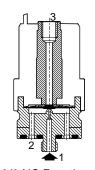


Seal Materials\* FKM (fluoroelastomer), EPDM, NBR <sup>1</sup>

1 FFKM seals for corrosive fluids available on request
\* Ensure that the compatibility of the materials in contact with the fluids is verified.


**Temperature Range** 

0 °C to 60 °C (0 °F to 140 °F)


| General Valve Information |                                    |  |  |  |  |  |  |
|---------------------------|------------------------------------|--|--|--|--|--|--|
| Body                      | Stainless steel, AISI 303 (1.4305) |  |  |  |  |  |  |
| Others                    | Stainless steel, FKM               |  |  |  |  |  |  |
| Response Time             | < 10ms                             |  |  |  |  |  |  |
| Vacuum Rating             | -1 bar (-14.5 psi)                 |  |  |  |  |  |  |
| Maximum Viscosity         | 20 cSt (mm <sup>2</sup> /s)        |  |  |  |  |  |  |

| Electrical Characteristics |                       |  |  |  |  |  |  |
|----------------------------|-----------------------|--|--|--|--|--|--|
| Coil Insulation Class      | F                     |  |  |  |  |  |  |
| Electrical Safety          | IEC 335               |  |  |  |  |  |  |
| Standard Voltages          | 6 VDC, 12 VDC, 24 VDC |  |  |  |  |  |  |
| Power Consumption          | 2 W at 20 °C          |  |  |  |  |  |  |

2/2 NC Function



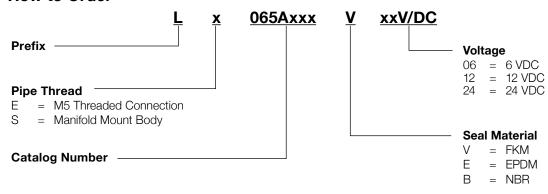
3/2 NC Function



Manifold Mount Body

3/2 NC Function, Manifold Mount Body

|                    | Po     | ower F | Rating | l            | Ambient               |                                             |                   |
|--------------------|--------|--------|--------|--------------|-----------------------|---------------------------------------------|-------------------|
| Protection         | Inrush | Hole   | ding   | Hot/<br>Cold | Temperature<br>Range  | Electrical<br>Connection                    | Type <sup>1</sup> |
| VA                 | VA     | VA     | W      | W            | °C (°F)               |                                             |                   |
| IP40<br>(EN 60529) | -      | -      | -      | 2.1/2.1      | 0 to 60<br>(0 to 140) | Lead wires (ETFE),<br>length 0.35m (13.8in) | 01                |


<sup>&</sup>lt;sup>1</sup> Refer to the dimensional drawings on the following page

GENERAL SERVICE VALVES, FLAT SPRING SOLENOID

| Specification                   | ns                            |           |       |                                    |            |                |            |                     |
|---------------------------------|-------------------------------|-----------|-------|------------------------------------|------------|----------------|------------|---------------------|
| Connection                      | Orifice Size Flow Coefficient |           | F     | Operating<br>Pressure<br>bar (psi) |            | Catalog Number |            |                     |
|                                 | mm (inches)                   | Kv (m3/h) | Cv    | min.                               | max.       | W              | threaded   | manifold-mount body |
| 2/2 NC - Norn                   | nally Closed                  |           |       |                                    |            |                |            |                     |
|                                 | 0.6 (0.024)                   | 0.013     | 0.015 | 0                                  | 7 (101)    | 2.1            | LE065A001V | LS065A001V          |
| M5 1                            | 1.0 (0.040)                   | 0.025     | 0.029 | 0                                  | 5 (72.5)   | 2.1            | LE065A002V | LS065A002V          |
|                                 | 1.4 (0.055)                   | 0.032     | 0.037 | 0                                  | 3 (43.5)   | 2.1            | LE065A003V | LS065A003V          |
|                                 | 2.0 (0.080)                   | 0.057     | 0.066 | 0                                  | 1.5 (21.8) | 2.1            | LE065A004V | LS065A004V          |
| 2/2 NO - Norn                   | nally Open                    |           |       |                                    |            |                |            |                     |
| <b>2/2 NO - Norm</b><br>M5      | 0.6 (0.024)                   | 0.013     | 0.015 | 0                                  | 7 (101)    | 2.1            | LE065A005V | -                   |
|                                 | 1.0 (0.040)                   | 0.025     | 0.029 | 0                                  | 5 (72.5)   | 2.1            | LE065A006V | -                   |
| CIVI                            | 1.4 (0.055)                   | 0.032     | 0.037 | 0                                  | 3 (43.5)   | 2.1            | LE065A007V | -                   |
|                                 | 2.0 (0.080)                   | 0.057     | 0.066 | 0                                  | 1.5 (21.8) | 2.1            | LE065A008V | -                   |
| 3/2 NC - Norm                   | nally Closed                  |           |       |                                    |            |                |            |                     |
|                                 | 0.6 (0.024)                   | 0.013     | 0.015 | 0                                  | 7 (101)    | 2.1            | LE065A009V | LS065A009V          |
| 2/2 NO - Norm M5  3/2 NC - Norm | 1.0 (0.040)                   | 0.025     | 0.029 | 0                                  | 5 (72.5)   | 2.1            | LE065A010V | LS065A010V          |
|                                 | 1.4 (0.055)                   | 0.032     | 0.037 | 0                                  | 3 (43.5)   | 2.1            | LE065A011V | LS065A011V          |
|                                 | 2.0 (0.080)                   | 0.057     | 0.066 | 0                                  | 1.5 (21.8) | 2.1            | LE065A012V | LS065A012V          |

<sup>1</sup> External thread with pad-mount body

#### **How to Order**



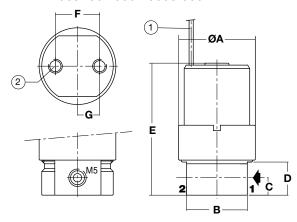
#### **Options**

- Cleaned for oxygen service
- Other pipe connections are available
- 0.7 W rated coil available on request

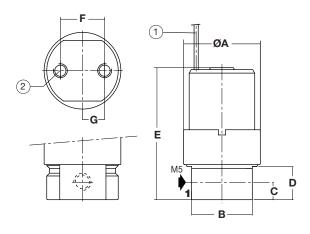
#### Installation

- The solenoid valves can be mounted in any position without affecting operation
- Threaded solenoid valves have 2 mounting holes in body

#### GENERAL SERVICE VALVES, FLAT SPRING SOLENOID


#### Dimensions: mm (inches)

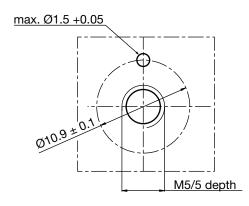
#### 2-Way Flat Spring Solenoid




Prefix "L" solenoid Leaded Coil IP40

#### LE065A001V/002V/003V/004V




#### LE065A005V/006V/007V/008V



#### LS065A001V/002V/003V/004V



Mounting pad

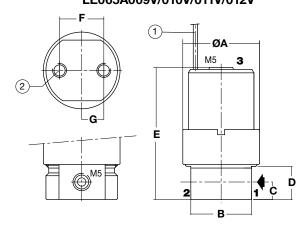


- 1) 2 electrical supply wires, length: 0.35m (13.8in)
- (2) 2 mounting holes ØM4, depth: 6mm (0.24in)
- (3) Mounting with hook spanner wrench DIN 1810B

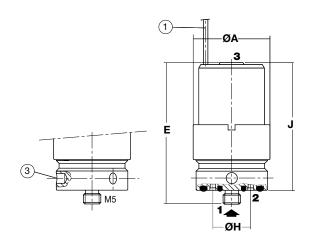
| Туре | Prefix<br>Option          | Catalog Number            | Α              | В              | С             | D             | E              | F              | G              | Н              | J            |
|------|---------------------------|---------------------------|----------------|----------------|---------------|---------------|----------------|----------------|----------------|----------------|--------------|
|      | LE065A001V/002V/003V/004V | 22<br>(0.87)              | 17.4<br>(0.69) | 5<br>(0.20)    | 9.5<br>(0.37) | 38<br>(1.50)  | 12.7<br>(0.50) | 6.35<br>(0.25) | -              | -              |              |
| 01   | 01 L                      | LS065A001V/002V/003V/004V | 22<br>(0.87)   | -              | -             | -             | 41<br>(1.61)   | -              | -              | 10.9<br>(0.43) | 37<br>(1.46) |
|      |                           | LE065A005V/006V/007V/008V | 22<br>(0.87)   | 17.4<br>(0.69) | 5<br>(0.20)   | 9.5<br>(0.37) | 38<br>(1.50)   | 12.7<br>(0.50) | 6.35<br>(0.25) | -              | -            |

<sup>&</sup>lt;sup>1</sup> Including leads, length: 0.35m (13.8in)

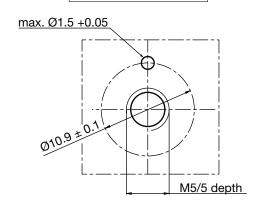
GENERAL SERVICE VALVES, FLAT SPRING SOLENOID


#### **Dimensions: mm (inches)**

#### 3-Way Flat Spring Solenoid




Prefix "L" solenoid Leaded Coil IP40


#### LE065A009V/010V/011V/012V



#### LS065A009V/010V/011V/012V

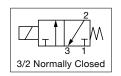


Mounting pad



- 1) 2 electrical supply wires, length: 0.35m (13.8in)
- (2) 2 mounting holes ØM4, depth: 6mm (0.24in)
- (3) Mounting with hook spanner wrench DIN 1810B

| Туре | Prefix<br>Option | Catalog Number            | Α            | В              | С           | D             | E            | F              | G              | н              | J            |
|------|------------------|---------------------------|--------------|----------------|-------------|---------------|--------------|----------------|----------------|----------------|--------------|
| 01   |                  | LE065A009V/010V/011V/012V | 22<br>(0.87) | 17.4<br>(0.69) | 5<br>(0.20) | 9.5<br>(0.37) | 38<br>(1.50) | 12.7<br>(0.50) | 6.35<br>(0.25) | -              | -            |
| UI   | Ĺ                | LS065A009V/010V/011V/012V | 22<br>(0.87) | -              | -           | -             | 41<br>(1.61) | -              | -              | 10.9<br>(0.43) | 37<br>(1.46) |

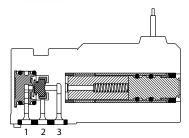

<sup>&</sup>lt;sup>1</sup> Including leads, length: 0.35m (13.8in)



01089GB-2019-R01

#### GENERAL SERVICE VALVES, MINIATURE SOLENOID

- Series 076 solenoid valves are designed for use with air and inert gases and can also be used to pilot other valves or cylinders.
- Compact architecture and low power consumption of only 0.9 W make them ideal for portable medical devices.
- Option for side-by-side mounting on complex manifold solutions is ideal for control of multiple flow paths in portable or small envelope applications.
- Meets all relevant CE directives, and is RoHS compliant.
- Typical applications include:
  - Respiratory Therapy
  - Patient Simulators
  - Pilot Valves
  - Wide Range of Other General Service Needs






| Fluids                           | Temperature Range                   | Seal Materials |
|----------------------------------|-------------------------------------|----------------|
| Air or Inert Gas, non-lubricated | -5 °C to 50 °C<br>(23 °F to 122 °F) | FKM            |

NOTE: Additional constructions and options are available including alternate elastomers and orifice sizes. Minimum quantities apply.

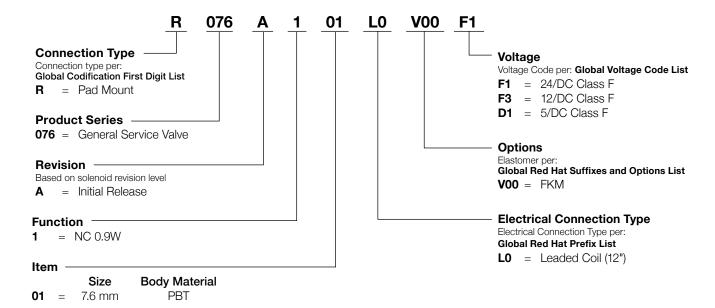
| General Valve Information |                                        |  |  |  |  |
|---------------------------|----------------------------------------|--|--|--|--|
| Body                      | PA / PBT                               |  |  |  |  |
| Others                    | Acetal, Brass, Nickel, Stainless Steel |  |  |  |  |
| Response Time             | < 10ms                                 |  |  |  |  |



3/2 NC Pad Mount Body

| <b>Electrical Characteristics</b> |                       |
|-----------------------------------|-----------------------|
| Standard Voltages*                | 5 VDC, 12 VDC, 24 VDC |
| Power Consumption                 | 0.9 W                 |

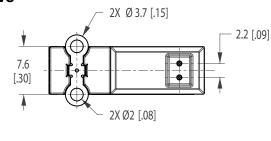
<sup>\*</sup> Other voltages on request

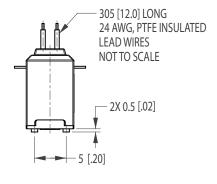

NOTE: The solenoid valves are designed for continuous operation within the maximum ambient temperature limits.

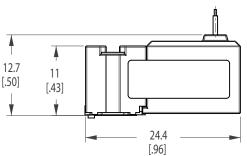
| Insulation<br>Class | Insulation   |      | Ambient<br>Temperature<br>Range | Electrical Connection                              |  |  |
|---------------------|--------------|------|---------------------------------|----------------------------------------------------|--|--|
| °C (°F) VA          |              | VA   | °C (°F)                         |                                                    |  |  |
| F                   | 155<br>(311) | IP40 | -5 to 50<br>(23 to 122)         | 24 AWG Lead wires, 0.3m (12.0in) long, PTFE coated |  |  |

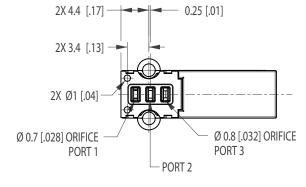
| Spe    | cifica                   | ations | ;     |                        |           |             |                      |              |         |                 |  |
|--------|--------------------------|--------|-------|------------------------|-----------|-------------|----------------------|--------------|---------|-----------------|--|
|        | Orific                   | e Size |       | Flow Coe               | .ee:alaat | Operating F | Pressure bar (psi)   | Dawer Dating |         |                 |  |
| ı      | mm (ir                   | nches) |       | Flow Coe               | mcient    | min.        | max.                 | Power Rating | Voltage | Catalog Number  |  |
| 1      | 2                        | 2      | З     | Kv (m <sup>3</sup> /h) | Cv        | 111111.     | gases, liquids       | W            |         |                 |  |
| 3/2 N  | 3/2 NC - Normally Closed |        |       |                        |           |             |                      |              |         |                 |  |
|        |                          |        |       |                        |           |             |                      |              | 24 VDC  | R076A101L0V00F1 |  |
| 0.7 (0 | 0.028)                   | 0.8 (0 | .032) | 0.011                  | 0.009     | -0.9 (-13)  | -0.9 (-13) 6.9 (100) | 0.9          | 12 VDC  | R076A101L0V00F3 |  |
|        |                          |        |       |                        |           |             |                      |              | 5 VDC   | R076A101L0V00D1 |  |

GENERAL SERVICE VALVES, MINIATURE SOLENOID

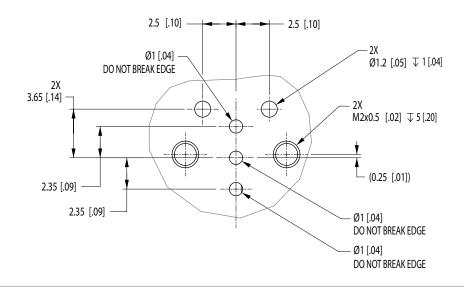

#### **How to Order**





GENERAL SERVICE VALVES, MINIATURE SOLENOID


#### **Dimensions: mm (inches)**

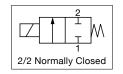
#### 3-Way Pad Mount Solenoid Valve











#### **Manifold Interface**



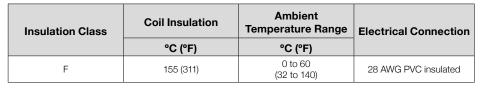


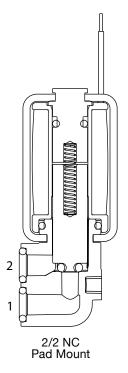
#### **GENERAL SERVICE VALVES**

- Series 090 solenoid valves are designed for use with air and inert gases
- Flow to size ratio ideal for portable oxygen therapy applications
- Compact light-weight architecture and low power consumption make them ideal for portable medical devices
- Exceptional service lifetime over 50 million cycles that increases OEM instrument reliability
- Meets all relevant CE directives, and is RoHS compliant
- Typical applications include:
  - Oxygen Delivery
  - Compression Therapy
  - Gas Analyzers






| Fluids*                       | Temperature Range               | Seal Materials* |
|-------------------------------|---------------------------------|-----------------|
| Air or Inert Gas <sup>1</sup> | 0 °C to 60 °C (32 °F to 140 °F) | FKM             |

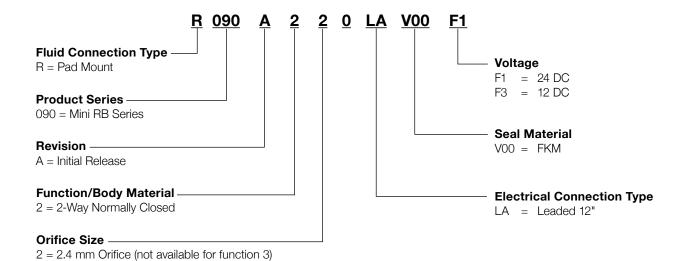

NOTE: Additional constructions and options are available including alternate elastomers and orifice sizes. Minimum quantities apply.

| General Valve Information |                   |  |  |  |
|---------------------------|-------------------|--|--|--|
| Body                      | PBT               |  |  |  |
| Others                    | Stainless Steel   |  |  |  |
| Response Time             | < 15ms            |  |  |  |
| Vacuum Rating             | -0.9 bar (13 psi) |  |  |  |

| Electrical Characteristics                                   |                                                                                    |  |  |  |  |
|--------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|--|
| Duty Cycle Intermittent, must use spike and hold noted below |                                                                                    |  |  |  |  |
| Spike and Hold                                               | Spike at nominal voltage for 500 – 5000 ms max.<br>Hold at 50% of nominal voltage. |  |  |  |  |
| Connector                                                    | Lead wires                                                                         |  |  |  |  |
| Connector Specification                                      | 28 AWG PVC insulated                                                               |  |  |  |  |
| Standard Voltages*                                           | 12 VDC, 24 VDC                                                                     |  |  |  |  |
| Power Rating                                                 | 4.3 W Inrush, 1.0 W Hold                                                           |  |  |  |  |

<sup>\*</sup> Other voltages on request






| Specifications      |                          |              |       |            |                         |            |            |                  |
|---------------------|--------------------------|--------------|-------|------------|-------------------------|------------|------------|------------------|
| Connection          | Orifice Size             | Flo<br>Coeff |       | Operatin   | g Pressure bar<br>(psi) | Pov<br>Rat | wer<br>ing | Catalog Number   |
| Connection          |                          | Ocen         |       |            | max.                    | (V         | V)         | Catalog Nulliber |
|                     | mm (inches)              | Kv (m3/h)    | Cv    | min.       | Air, inert gas          | Inrush     | Hold       |                  |
| 2/2 NC - Normally C | 2/2 NC - Normally Closed |              |       |            |                         |            |            |                  |
| Pad Mount, PBT (F)  | 2.4 (0.093)              | 0.183        | 0.072 | -0.9 (-13) | 1.4 (20)                | 4.3        | 1.0        | R090x220LAV00Fx  |

<sup>1</sup> filtered at 10µm
\* Ensure that the compatibility of the materials in contact with the fluids is verified.

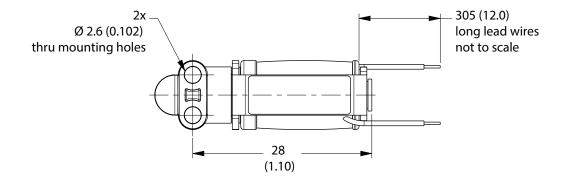
**GENERAL SERVICE VALVES** 

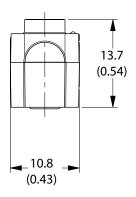
#### **How to Order**

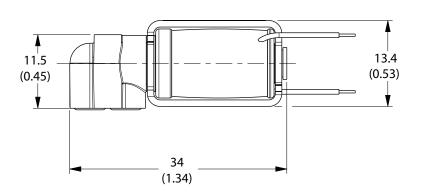


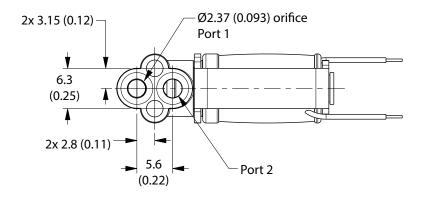
#### **Options**

- Other seal materials available on request
- Other voltages and electrical connections available
- · Oxygen service


#### Installation


 The solenoid valves can be mounted in any position without affecting operation.

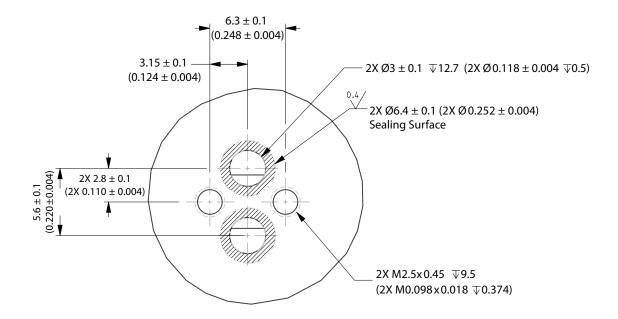

**GENERAL SERVICE VALVES** 


**Dimensions: mm (inches)** 

#### 2-Way and Pad Mount Solenoid Valve

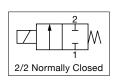









**GENERAL SERVICE VALVES** 


**Dimensions: mm (inches)** 

#### **Mounting Pattern for Pad Mount Solenoid Valve**



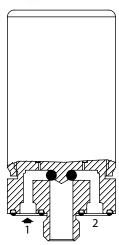
GENERAL SERVICE VALVE, COMPACT 2-WAY SOLENOID

- Direct acting solenoid valve for use with air and inert gases
- Manifold mount construction that is suitable for a wide variety of gas application
- · Exceptionally long service lifetime ensures maximum reliability
- High-flow design is ideal for quickly inflating / deflating therapeutic air bladders in support surface applications
- Typical applications include
  - Hospital Beds
  - Therapeutic Support Surfaces
  - Endoscopy Drying Systems
  - Deep Vein Thrombosis (DVT)





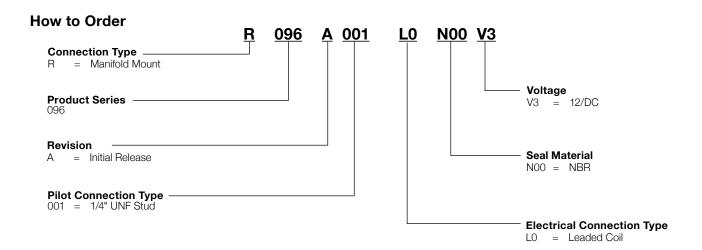
| Fluids*          | Temperature Range           | Seal Materials* |
|------------------|-----------------------------|-----------------|
| Air, inert gases | 0°C to 55°C (32°F to 131°F) | NBR             |


<sup>\*</sup> Ensure that the compatibility of the materials in contact with the fluids is verified.

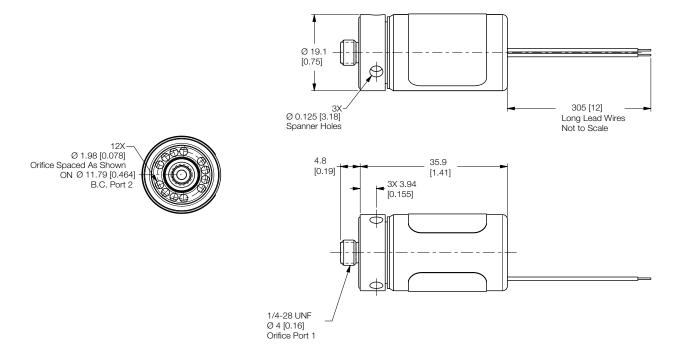
| General Valve Information |                 |
|---------------------------|-----------------|
| Body                      | Stainless Steel |

| Electrical Characteristics      |                                                                                    |  |  |  |  |  |
|---------------------------------|------------------------------------------------------------------------------------|--|--|--|--|--|
| Coil Insulation Class           | В                                                                                  |  |  |  |  |  |
| Duty Cycle                      | Intermittent, must use spike and hold noted below                                  |  |  |  |  |  |
| Spike and Hold                  | Spike at nominal voltage for 500 - 5000 ms max.<br>Hold at 50% of nominal voltage. |  |  |  |  |  |
| Connector                       | Lead Wires                                                                         |  |  |  |  |  |
| Connector Specification         | 28 AWG PVC Insulated                                                               |  |  |  |  |  |
| Electrical Enclosure Protection | IP40                                                                               |  |  |  |  |  |
| Standard Voltages*              | 12 VDC                                                                             |  |  |  |  |  |

<sup>\*</sup> Other voltages on request.


| Electrical | Powe   | er Ratings | Ambient Temperature Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|------------|--------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Connection | Inrush | Holding    | portunity in the second |  |  |
|            | w w    |            | °C (°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Lead Wires | 7.6    | 1.9        | 0 to 55 (32 to 131)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |

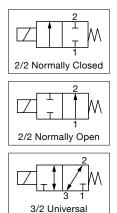



2/2 Normally Closed

| Specification                           | Specifications           |                        |                  |               |                                 |        |           |                  |
|-----------------------------------------|--------------------------|------------------------|------------------|---------------|---------------------------------|--------|-----------|------------------|
| 0                                       | Orifice Size             |                        | Flow Coefficient |               | Operating Pressure<br>bar (psi) |        | ating (W) | October Nicorker |
| Connection                              | mm<br>(inches)           | Kv (m <sup>3</sup> /h) | Cv               | min.          | max.                            | Inrush | Hold      | Catalog Number   |
| 2/2 NC - Norm                           | 2/2 NC - Normally Closed |                        |                  |               |                                 |        |           |                  |
| 1/4-28 UNF<br>Stud<br>Manifold<br>Mount | 4.0 (0.16)               | 2.621                  | 0.387            | 0 bar (0 psi) | 0.34 bar (5 psi)                | 7.6    | 1.9       | R096A001L0N00V3  |

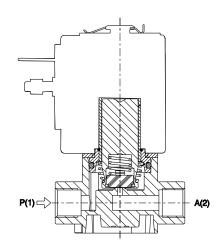
GENERAL SERVICE VALVE, COMPACT 2-WAY SOLENOID




#### Dimensions: mm (inches)



## L123 / L257 / L323


**GENERAL SERVICE VALVES** 

- Direct acting solenoid valve.
- Suitable to shut off liquid and gaseous fluids; suitable for low pressure steam and applications in sterilising autoclaves (verify the compatibility of materials with fluids in contact).
- Typical applications include
  - Dental equipment
  - Steam sterilizers
  - Bio-medical analyzers
  - Low pressure steam





| General Valve Information |                                         |  |  |  |
|---------------------------|-----------------------------------------|--|--|--|
| Body                      | PPS                                     |  |  |  |
| Seals*                    | FKM                                     |  |  |  |
| Internal Components       | Stainless Steel Stainless Steel and PPS |  |  |  |
| Seat                      | PPS                                     |  |  |  |
| Core Tube                 | Stainless Steel                         |  |  |  |
| Shading coil              | Copper                                  |  |  |  |
| Fluids                    | Liquids or gases                        |  |  |  |
| Fluid temperature         | 0°C +130°C                              |  |  |  |
| Differential pressure     | see "Specifications" [1 bar = 100 kPa]  |  |  |  |
| Response time             | ~ 20ms                                  |  |  |  |
| Max. Viscosity            | 37 cSt (mm²/s)                          |  |  |  |



 $<sup>^{\</sup>star}$  Ensure that the compatibility of the materials in contact with the fluids is verified

| Electric                              | Electrical Characteristics |                                                                |                                                              |                                                   |  |  |  |  |
|---------------------------------------|----------------------------|----------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------|--|--|--|--|
|                                       |                            | ZA10A (UL class F - for UL<br>cl.H: ZA34 (E153691))            | ZA10B (UL class F - for UL<br>cl.H: ZA34 (E153691))          | ZA10G (UL class F - for UL cl.H: ZA34 (E153691))  |  |  |  |  |
| Continous<br>duty                     |                            | ED 100%                                                        | ED 100%                                                      | ED 100%                                           |  |  |  |  |
| Coil Insulation<br>Class              |                            | F (155°C)<br>on request class H<br>(180°C)                     | F (155°C)                                                    | F (155°C)<br>on request class H<br>(180°C)        |  |  |  |  |
| Connector                             |                            | DIN 46340 - 3<br>pole connector<br>(EN175301-803)              | DIN 46340 - 3<br>pole connector<br>(EN175301-803)            | DIN 46340 - 3<br>pole connector<br>(EN175301-803) |  |  |  |  |
| Encapsula<br>material                 | tion                       | PPS (polyphenilsulfure) fiberglass reinforced                  | PET (polyethylene-<br>terephtalate) fiberglass<br>reinforced | PPS (polyphenilsulfure) fiberglass reinforced)    |  |  |  |  |
| Electrical<br>Enclosure<br>Protection |                            | IP67 (EN60529) with plug connector                             | IP65 (EN60529) with plug connector                           | IP67 (EN60529) with plug connector                |  |  |  |  |
|                                       | DC                         | 12-24 V (+10% -5%)                                             | 24V (+10% -5%) (UL)                                          | 12-24 V (+10% -5%)                                |  |  |  |  |
| Standard<br>Voltages* AC              |                            | 24V/50Hz - 110V/50Hz<br>(120V/60Hz) - 230V/50Hz<br>(+10% -15%) |                                                              |                                                   |  |  |  |  |

<sup>\*</sup> other voltages and frequencies on request

**GENERAL SERVICE VALVES** 

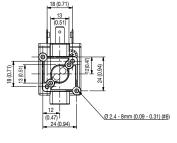
| Specification                 | ons             |                           |              |      |        |        |       |      |        |            |           |                |                |            |        |  |
|-------------------------------|-----------------|---------------------------|--------------|------|--------|--------|-------|------|--------|------------|-----------|----------------|----------------|------------|--------|--|
|                               |                 |                           |              | Ope  | eratin | g Pres | sure, | bar  | D-     | wer Rating |           |                |                |            |        |  |
| Pipe                          | Orifice<br>Size |                           | ow<br>icient |      |        | ma     | ax.   |      | Po     | (W)        | ,         | Catalog Number |                | Sealing    |        |  |
| Connection                    |                 |                           |              | min. | Ga     | ses    | Liqu  | uids | AC     | (VA)       | DC<br>(W) | Threaded       | d Body         | Materials* | Notes  |  |
|                               | mm              | Kv<br>(m <sup>3</sup> /h) | Cv           |      | AC     | DC     | AC    | DC   | Inrush | Holding    |           |                | Coil           |            |        |  |
| 2/2 NC - Norr                 | nally Clo       | sed                       |              |      |        |        |       |      |        |            |           |                |                |            |        |  |
|                               | 1.6             | 0.09                      | 0.10         |      | 10     | 10     | 10    | 10   |        |            |           |                |                |            |        |  |
| G1/8                          | 2.3             | 0.15                      | 0.17         |      | 10     | 10     | 10    | 10   |        |            |           | L123V01        |                |            | 1,2,3  |  |
|                               | 3.2             | 0.25                      | 0.29         |      | 10     | 4      | 10    | 4    |        |            |           |                |                |            |        |  |
|                               | 1.6             | 0.09                      | 0.10         |      | 10     | 10     | 10    | 10   |        |            |           |                |                |            |        |  |
| Barbed ports                  | 2.3             | 0.15                      | 0.17         |      | 10     | 10     | 10    | 10   |        |            |           | L123V02        |                |            | 2,3    |  |
|                               | 3.2             | 0.25                      | 0.29         | 0    | 10     | 4      | 10    | 4    | 23     | 14         | 9         |                | ZA10A          | FKM        |        |  |
|                               | 1.6             | 0.09                      | 0.10         |      | 10     | 10     | 10    | 10   | 1      |            |           |                |                |            |        |  |
| Barbed ports with ring nut    | 2.3             | 0.15                      | 0.17         |      | 10     | 10     | 10    | 10   |        |            |           | L123V03        | 123V03         |            | 2,3,4  |  |
| warmignac                     | 3.2             | 0.25                      | 0.29         |      | 10     | 4      | 10    | 4    |        |            |           |                |                |            |        |  |
| D 1 1 1                       | 2.3             | 0.15                      | 0.17         |      | 10     | 10     | 10    | 10   |        |            |           | 1400\/04       | 1              |            | 0.5    |  |
| Barbed ports                  | 3.2             | 0.25                      | 0.29         |      | 10     | 4      | 10    | 4    |        |            |           | L132V04        |                |            | 3,5    |  |
| 2/2 NO - Norr                 | nally Ope       | en                        |              |      |        |        |       |      |        |            |           |                |                |            |        |  |
| G1/8                          |                 | 0.40                      |              |      |        |        |       |      |        |            |           | L257V02        |                |            | 1, 3,5 |  |
| Barbed ports                  | 3               | 0.18                      | 0.21         |      | 3      | 3      | 3     | 3    | 23     | 14         | 9         | L257V01        | ZA10A          |            | 2,3    |  |
| Barbed ports<br>with ring nut |                 | 0.15                      | 0.17         |      |        |        |       |      |        |            |           | L257V03        |                |            | 2,3,4  |  |
| 01/4                          |                 | 0.00                      | 0.00         |      | 2.5    |        | 2.5   |      | 23     | 14         |           | 1.057)/04      | ZA10A          | -          | 1.0    |  |
| G1/4                          | 4.2             | 0.33                      | 0.38         | 0    |        | 2.5    |       | 2.5  |        |            | 10        | L257V04        | ZA10B          | FKM        | 1,3    |  |
| Barbed ports                  | 4.2             | 0.26                      | 0.30         |      | 2.5    |        | 2.5   |      | 23     | 14         |           | L257V05        | ZA10A          |            | 3      |  |
| barbed ports                  |                 | 0.20                      | 0.30         |      |        | 2.5    |       | 2.5  |        |            | 10        | L237 V03       | ZA10B          |            |        |  |
| Barbed ports                  | 2.5             | 0.14                      | 0.16         |      | 5      | 5      | 5     | 5    | 23     | 14         | 9         | L257V06        | ZA10A          |            | 2,3    |  |
| Barbea ports                  | 3               | 0.18                      | 0.21         |      | 3      | 3      | 3     | 3    | 20     | 1-7        |           | L201 V00       | 2/110/1        |            | 2,0    |  |
| 3/2 U - Unive                 | rsal            |                           |              |      |        |        |       |      |        |            |           |                |                |            |        |  |
| 04/0                          |                 |                           |              |      | 4      |        | 4     |      | 23     | 14         |           | 1 000) (010    | ZA10A          |            | 100    |  |
| G1/8                          |                 |                           | 0.00         |      |        | 4      |       | 4    |        |            | 12        | L323V01G       | ZA10G          |            | 1,2,3  |  |
| Davida ad a sasta             |                 | 0.2                       | 0.23         |      | 4      |        | 4     |      | 23     | 14         |           |                | ZA10A          |            |        |  |
| Barbed ports                  |                 |                           |              |      |        | 4      |       | 4    |        |            | 12        | L323V02G       | ZA10G          | F10.4      | 2,3    |  |
| Barbed ports                  | 2.3             | 0.40                      | 014          | 0    | 4      |        | 4     |      | 23     | 14         |           | 1 202/1020     | ZA10A          | FKM        | 0.04   |  |
| with ring nut                 |                 | 0.12                      | 0.14         |      |        | 4      |       | 4    |        |            | 12        |                | L323V03G ZA10G |            | 2,3,4  |  |
| Parhad sarts                  |                 | 0.0                       | 0.00         | 1    | 4      |        | 4     |      | 23     | 14         |           |                | ZA10A          | 1          | 0.0    |  |
| Darbed ports                  |                 | 0.2                       | 0.23         |      |        | 4      |       | 4    |        |            | 12        | L323VU4G       | ZA10G          |            | 2,3    |  |
| Barbed ports                  |                 | 0.2                       | 0.23         |      |        | 4      |       | 4    |        |            | 12        | L323V04G       | ZA10G          |            |        |  |

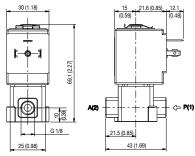
<sup>\*</sup> Sealings: FKM = Fluoro-carbon elastomer

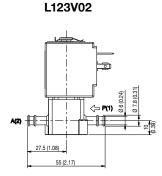


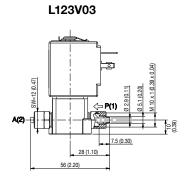
<sup>1</sup> Maximum driving torque of the pipe fittings for thread connections = 2Nm 2 Only for use with steam, consider following values: PSmax 2.8 bar (max fluid temperature 130°)

<sup>3</sup> The pressure values shown in the table refer to the potential of the valve: they can be lower depending on the connection system used

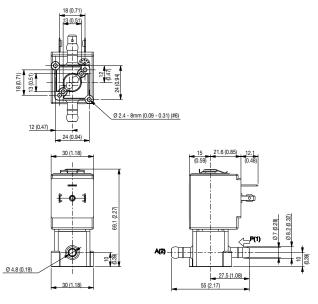

<sup>4</sup> Maximum driving torque of ring nut 1.2Nm 5 Only for use with steam, consider following values: PSmax 2.8 bar (max fluid temperature 130°)


L123/L257/L323


**GENERAL SERVICE VALVES** 

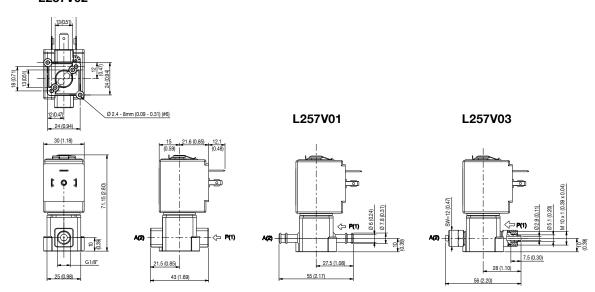

#### Dimensions: mm (inches)

#### L123V01

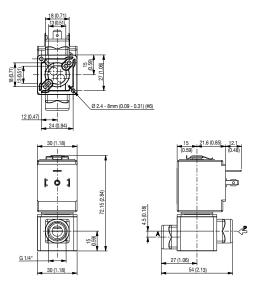




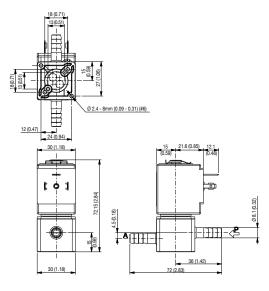



#### L123 V04




#### Dimensions: mm (inches)

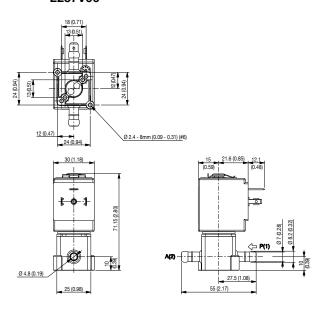

#### L257V02



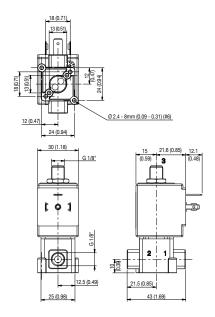
#### L257V04



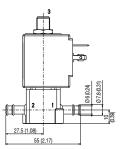
#### L257V05



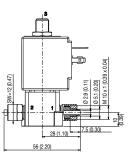

L123/L257/L323


**GENERAL SERVICE VALVES** 

#### **Dimensions: mm (inches)**

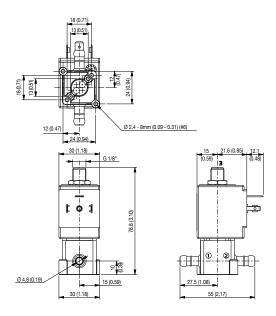

#### L257V06




#### L323V01G



#### L323V02G




#### L323V03G



#### Dimensions: mm (inches)

#### L323-V04G



#### **Spare Part Kits**

#### L123-V01/V02/V03/V04

| Kit description           | Kit P.N.     | Consisting of:              |
|---------------------------|--------------|-----------------------------|
| Core kit                  | G3139401     | Core                        |
| Core return spring kit    | G3022401     | N.10 core return spring     |
| O-Ring guide assembly kit | GU2428000017 | N.10 O-Ring guide assembly  |
| Guide assembly kit        | G31487       | Guide assembly<br>Coil clip |
| Coil                      | ZA10A        | Coil                        |

#### L257-V01/V02/V03

| Kit description           | Kit P.N.     | Consisting of:                                                                               |
|---------------------------|--------------|----------------------------------------------------------------------------------------------|
| Core kit                  | G3138301     | Core return spring Core O-Ring guide assembly Pusher Sealing disc return spring Sealing disc |
| Core return spring kit    | G290513-001  | N°.10 Core return spring                                                                     |
| O-Ring guide assembly kit | GU2428000015 | N°.10 OR guide assembly                                                                      |
| Guide assembly kit        | G31488       | Guide assembly<br>Coil clip                                                                  |
| Coil                      | ZA10A        | Coil                                                                                         |

L123/L257/L323

**GENERAL SERVICE VALVES** 

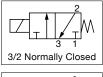
#### L257-V04 / L257-V05

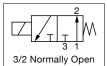
| Kit description           | Kit P.N.       | Consisting of:                                                                               |
|---------------------------|----------------|----------------------------------------------------------------------------------------------|
| Core kit                  | G3138301       | Core return spring Core O-Ring guide assembly Pusher Sealing disc return spring Sealing disc |
| Core return spring kit    | G290513-001    | N°.10 Core return spring                                                                     |
| O-Ring guide assembly kit | GU2428000015   | N°. 10 OR guide assembly                                                                     |
| Guide assembly kit        | G31488         | Guide assembly<br>Coil clip                                                                  |
| Coil                      | ZA10A<br>ZA10B | Coil                                                                                         |

#### L257-V06

| Kit description           | Kit P.N.     | Consisting of:                                                                               |
|---------------------------|--------------|----------------------------------------------------------------------------------------------|
| Core kit                  | G3138301     | Core return spring Core O-Ring guide assembly Pusher Sealing disc return spring Sealing disc |
| Core return spring kit    | G290513-001  | N°.10 Core return spring                                                                     |
| O-Ring guide assembly kit | GU2428000015 | N°. 10 OR guide assembly                                                                     |
| Guide assembly kit        | G31488       | Guide assembly<br>Coil clip                                                                  |
| Coil                      | ZA10A        | Coil                                                                                         |

#### L323-V01G/V02G/V03G/V04G


| Kit description           | Kit P.N.       | Consisting of:             |
|---------------------------|----------------|----------------------------|
| Core kit                  | G3065101       | Core                       |
| Core return spring kit    | G3022401       | N.10 core return spring    |
| O-Ring guide assembly kit | GU2428000017   | N.10 O-Ring guide assembly |
| Guide assembly            | 290564-001R    | Guide assembly             |
| Coil                      | ZA10A<br>ZA10G | Coil                       |


#### Installation

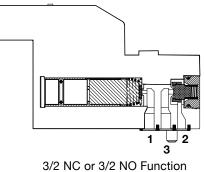
- Solenoid valve can be mounted in any position; vertical with coil upwards preferred.
- When using any sealant for fittings, please check its chemical compatibility with body material (PPS).
- In case of disassembling for usual maintenance, the fixing screws of the guide assembly have to be tightened with 0.6÷0.7 Nm torque.

#### GENERAL SERVICE VALVES, MINIATURE SOLENOID

- The 188 Series solenoid valves are designed for use with air and inert gases, and can also be used to pilot other valves or
- Compact architecture and low power consumption of only 1.3 W make them ideal for portable medical devices
- Also available in a 1 W version for increased versatility
- LED visual indicator and electrical protection circuitry are standard features
- Meets all relevant CE directives, and is RoHS compliant
- Typical applications include:
  - Respiratory Therapy
  - Dental
  - Anesthesia Delivery
  - Industrial Gas Analyzers








| Fluids                      | Temperature Range | Seal Materials |
|-----------------------------|-------------------|----------------|
| Air or Inert Gas,           | 5 °C to 50 °C     | NBR (Nitrile)  |
| non-lubricated <sup>1</sup> | (41 °F to 122 °F) | FKM            |

<sup>1</sup> filtered at 25 µm

NOTE: Additional constructions and options are available including alternate elastomers and orifice sizes. Minimum quantities apply.

| General Valve Information |                                                                    |  |  |  |
|---------------------------|--------------------------------------------------------------------|--|--|--|
| Body                      | PA (polyamide) MXD6                                                |  |  |  |
| Others                    | Stainless steel, nickel-plated steel, synthetic material, aluminum |  |  |  |
| Response Time             | < 10ms                                                             |  |  |  |
| Options                   | Oxygen clean available<br>300 Series Stainless Steel Body          |  |  |  |



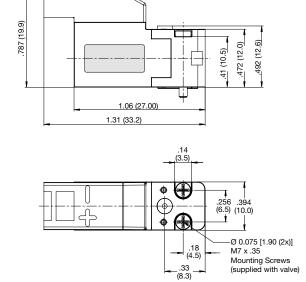
3/2 NC or 3/2 NO Function Pad Mount Body

| Electrical Characte | eristics                          |
|---------------------|-----------------------------------|
| Standard Voltages*  | 5 VDC, 12 VDC, 24 VDC (-15%/+10%) |
| Power Consumption   | 1 - 1.3 W                         |

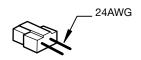
<sup>\*</sup> Other voltages on request

NOTE: The solenoid valves are designed for continuous operation within the maximum ambient temperature limits.

| Insulation<br>Class | Coil<br>Insulation | Protection | Ambient<br>Temperature<br>Range | Electrical Connection                                                                                           |
|---------------------|--------------------|------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                     | °C (°F)            | VA         | °C (°F)                         |                                                                                                                 |
| F                   | 155<br>(311)       | IP40       | 5 to 50<br>(41 to 122)          | Connector with two 0.5mm² lead wires + built-in LED and electrical protection or lead wires, 0.5m (19.7in) long |


GENERAL SERVICE VALVES, MINIATURE SOLENOID

| Orifia                  | o Sizo       |                        |          | Operating Pressure |                | Power  |                    |                  |
|-------------------------|--------------|------------------------|----------|--------------------|----------------|--------|--------------------|------------------|
| Orifice Size            |              | Flow Coefficient       |          |                    | bar (psi)      |        | Type of Electrical | Catalog Number   |
|                         | nches)       |                        |          | min.               | max.           | Rating | Connection*        | Catalog Nulliber |
| 1 -> 2                  | 2 -> 3       | Kv (m <sup>3</sup> /h) | Cv       |                    | gases, liquids | W      |                    |                  |
| 3/2 NC - No             | rmally Close | d                      |          |                    |                |        |                    |                  |
|                         |              |                        |          |                    |                |        | 01                 | 18801003         |
|                         |              |                        |          |                    |                | 1.3    | 02                 | 18801076         |
| 0.5 (0.020)             | 0.7 (0.028)  | 0.006                  | 0.007    | 0                  | 8 (116)        | 1.0    | 03                 | 18801074         |
|                         |              |                        |          |                    |                |        | 04                 | 18801078         |
|                         |              |                        |          |                    |                | 1      | 05                 | 18801072         |
|                         |              |                        |          |                    |                |        | 01                 | 18801081         |
|                         |              |                        |          |                    |                | 1.3    | 02                 | 18801082         |
| 0.8 (0.031)             | 0.8 (0.031)  | 0.007                  | 0.008    | 0                  | 4 (58)         | 1.3    | 03                 | 18801083         |
|                         |              |                        |          |                    |                |        | 04                 | 18801084         |
|                         |              |                        |          |                    |                | 1      | 05                 | 18801085         |
|                         |              |                        | 01       | 18801086           |                |        |                    |                  |
|                         |              | 0.011                  | 0.013    | 0                  |                | 1.3    | 02                 | 18801087         |
| 1.0 (0.040) 1.0 (0.040) | 1.0 (0.040)  |                        |          |                    | 2.5 (36)       |        | 03                 | 18801088         |
|                         |              |                        |          |                    |                |        | 04                 | 18801089         |
|                         |              |                        |          |                    |                | 1      | 05                 | 18801090         |
| 3/2 NO - No             | rmally Open  |                        | <u> </u> |                    |                |        | <u> </u>           |                  |
|                         | . ,          |                        |          |                    |                |        | 01                 | 18801063         |
|                         |              |                        |          |                    |                |        | 02                 | 18801077         |
| 0.5 (0.020)             | 0.5 (0.020)  | 0.006                  | 0.007    | 0                  | 6 (87)         | 1.3    | 03                 | 18801075         |
| 0.0 (0.020)             | 0.0 (0.020)  | 0.000                  | 0.001    | Ü                  | 0 (0.7)        |        | 04                 | 18801079         |
|                         |              |                        |          |                    |                | 1      | 05                 | 18801073         |
|                         |              |                        |          |                    |                |        | 01                 | 18801091         |
|                         |              |                        |          |                    |                |        | 02                 | 18801092         |
| 0.8 (0.031)             | 0.8 (0.031)  | 0.007                  | 0.008    | 0                  | 3 (43.5)       | 1.3    | 03                 | 18801093         |
| 0.0 (0.001)             | 0.0 (0.001)  | 0.001                  | 0.000    |                    | 0 (10.0)       |        | 04                 | 18801094         |
|                         |              |                        |          |                    |                | 1      | 05                 | 18801095         |
|                         |              |                        |          |                    |                |        | 01                 | 18801096         |
|                         |              |                        |          |                    |                |        | 02                 | 18801097         |
| 1.0 (0.040)             | 1.0 (0.040)  | 0.011                  | 0.013    | 0                  | 1.5 (21.8)     | 1.3    | 03                 | 18801098         |
| (0.0-0)                 | 1.0 (0.0-0)  | 0.011                  | 0.010    | 0                  | 1.0 (21.0)     |        | 04                 | 18801099         |
|                         |              |                        |          |                    |                | 1      | 05                 | 18801100         |

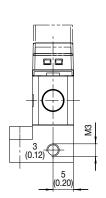

<sup>\*</sup> Type 01, 02, 03, 04 with LED and electrical protection 01 = horizontal, width 5.08mm (0.2in) 02 = vertical, width 5.08mm (0.2in)

03 = horizontal, width 2.54mm (0.1in) 04 = vertical, width 2.54mm (0.1in) 05 = cable ends 0.5m long (19.7in), 0.25mm²

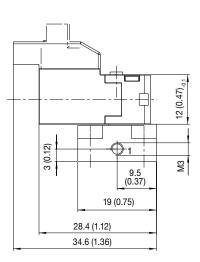
#### **Dimensions: mm (inches)**

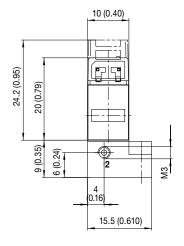


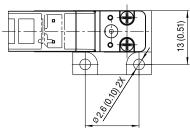
NOTE: The connectors to be ordered separately. Includes one connector with two wires.



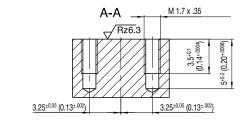

| Length     | Catalog Number |
|------------|----------------|
| 20" (0.5m) | 88118801       |
| 59" (1.5m) | 88118802       |
| 118" (3m)  | 88118803       |

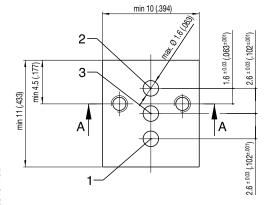

GENERAL SERVICE VALVES, MINIATURE SOLENOID


#### **Dimensions: mm (inches)**


#### **Valve Mounted on Single Subbase**



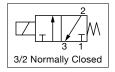

| Number | Subbase           | Weight |
|--------|-------------------|--------|
| Valves | Catalog<br>Number | kg     |
| 1      | 35300101          | 2.53   |

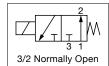







#### **Manifold Interface**






#### GENERAL SERVICE VALVES, MINIATURE SOLENOID WITH LATCHING COIL

- The 188 Series latching coil solenoid valves are designed for use with air and inert gases, and can also be used to pilot other valves or cylinders
- The benefit of the latching coil is that no power consumption is needed to hold the valve in the open position
- Compact architecture and low power consumption of only 1.3 W make them ideal for portable medical devices
- Also available in a 1 W version for increased versatility
- LED visual indicator and electrical protection circuitry are standard features
- · Meets all relevant CE directives, and is RoHS compliant
- Typical applications include:
  - Respiratory Therapy
  - Dental
  - Anesthesia Delivery
  - Industrial Gas Analyzers







| Fluids            | Temperature Range               | Seal Materials |  |
|-------------------|---------------------------------|----------------|--|
| Air or Inert Gas, | 5 °C to 50 °C (41 °F to 122 °F) | NBR (Nitrile)  |  |
| non-lubricated 1  | 5 C to 50 C (41 F to 122 F)     | FKM            |  |

<sup>&</sup>lt;sup>1</sup> filtered at 25µm

| General Valve Information* |                                                                    |  |  |  |
|----------------------------|--------------------------------------------------------------------|--|--|--|
| Body                       | PA (polyamide) MXD6                                                |  |  |  |
| Others                     | Stainless steel, nickel-plated steel, synthetic material, aluminum |  |  |  |
| Response Time              | < 10ms                                                             |  |  |  |
| Options                    | Oxygen clean available<br>300 Series Stainless Steel Body          |  |  |  |

<sup>\*</sup> Other materials on request

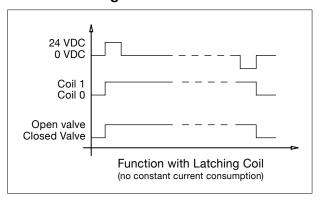
| Electrical Characteristics |                                   |  |  |  |  |
|----------------------------|-----------------------------------|--|--|--|--|
| Standard Voltages*         | 5 VDC, 12 VDC, 24 VDC (-15%/+10%) |  |  |  |  |
| Power Consumption          | 1 - 1.3 W                         |  |  |  |  |

<sup>\*</sup> Other voltages on request

| Insulation<br>Class | Coil<br>Insulation | Protection | Ambient<br>Temperature<br>Range | Electrical Connection                                                                                                       |  |
|---------------------|--------------------|------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|
|                     | °C (°F)            | VA         | °C (°F)                         |                                                                                                                             |  |
| F                   | 155<br>(311)       | IP40       | 5 to 50<br>(41 to 122)          | Connector with two 0.5mm <sup>2</sup> lead wires + built-in LED and electrical protection or lead wires, 0.5m (19.7in) long |  |

00217GB-2019-R01

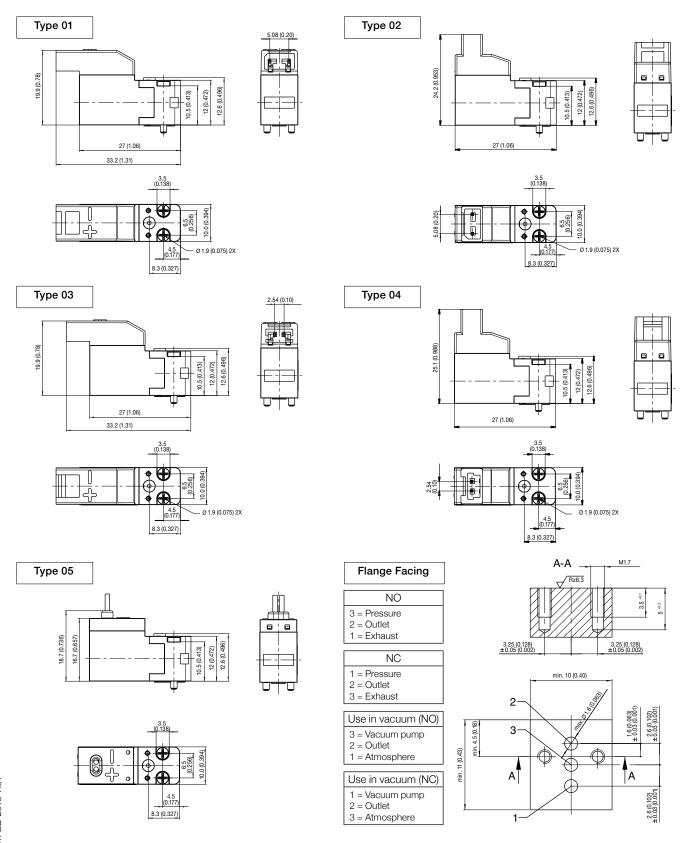
## ASCO<sup>TM</sup> MINIATURE SOLENOID VALVES GENERAL SERVICE VALVES, MINIATURE SOLENOID WITH LATCHING COIL


| Specificat              | ions                    |                        |         |                                 |                |            |                        |                |
|-------------------------|-------------------------|------------------------|---------|---------------------------------|----------------|------------|------------------------|----------------|
| Orifice Size            |                         | Flow Coefficient       |         | Operating Pressure<br>bar (psi) |                | Power      | Type of                |                |
| mm (i                   | nches)                  |                        |         |                                 | max.           | Rating     | Electrical Connection* | Catalog Number |
| 1 -> 2                  | 2> 3                    | Kv (m <sup>3</sup> /h) | Cv      | min.                            | gases, liquids | w          | Connection             |                |
| 3/2 NC/NO               |                         |                        |         |                                 |                |            | •                      |                |
|                         |                         |                        |         |                                 |                |            | 01                     | 18801101       |
|                         |                         |                        |         | 0                               |                | 1.3        | 02                     | 18801102       |
| 0.5 (0.020)             | 0.5 (0.020) 0.7 (0.028) | 0.7 (0.028) 0.007      | 0.008   |                                 | 7 (101)        | 1.3        | 03                     | 18801103       |
|                         |                         |                        |         |                                 |                |            | 04                     | 18801104       |
|                         |                         |                        |         |                                 |                | 1          | 05                     | 18801105       |
|                         |                         |                        | 0.010 0 |                                 |                |            | 01                     | 18801106       |
|                         |                         |                        |         | 0                               |                | 1.3        | 02                     | 18801107       |
| 0.8 (0.031)             | 0.8 (0.031)             | 0.009                  |         |                                 | 3 (43.5)       | 0 3 (43.5) | 1.3                    | 03             |
|                         |                         |                        |         |                                 |                |            |                        | 04             |
|                         |                         |                        |         |                                 |                | 1          | 05                     | 18801110       |
|                         |                         |                        |         |                                 |                | •          | 01                     | 18801111       |
| 1.0 (0.040) 1.0 (0.040) |                         |                        |         |                                 |                | 1.3        | 02                     | 18801112       |
|                         | 1.0 (0.040)             | 0 (0.040) 0.011 0.013  | 0       | 1 (14.5)                        | 1.3            | 03         | 18801113               |                |
|                         |                         |                        |         |                                 |                | 04         | 18801114               |                |
|                         |                         |                        |         |                                 |                | 1          | 05                     | 18801115       |

<sup>\*</sup> Type 01, 02, 03, 04 with LED and electrical protection 01 = horizontal, width 5.08mm (0.2in) 02 = vertical, width 5.08mm (0.2in)

#### **Wiring Diagram**

# CLOSED **OPEN**

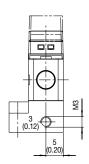

#### **Functional Diagram**

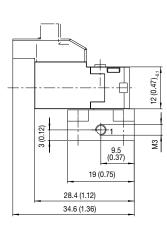


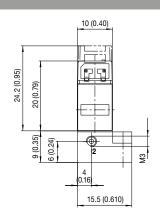
<sup>03 =</sup> horizontal, width 2.54mm (0.1in) 04 = vertical, width 2.54mm (0.1in) 05 = cable ends 0.5m long (19.7in), 0.25mm²

GENERAL SERVICE VALVES, MINIATURE SOLENOID WITH LATCHING COIL

#### **Dimensions: mm (inches)**

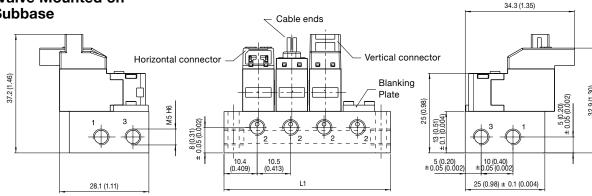




GENERAL SERVICE VALVES, MINIATURE SOLENOID WITH LATCHING COIL


#### **Dimensions: mm (inches)**

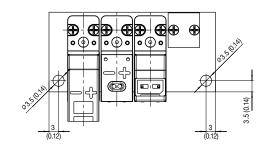
#### Solenoid Valve Mounted on **Single Subbase**

| Number    | Subbase<br>Catalog | Weight |
|-----------|--------------------|--------|
| of Valves | Number             | kg     |
| 1         | 35300101           | 0.015  |








#### **Solenoid Valve Mounted on Multiple Subbase**



| Number    | Subbase<br>Catalog | Length       |              |  |  |  |  |
|-----------|--------------------|--------------|--------------|--|--|--|--|
| of Valves | Number*            | L1           | L2           |  |  |  |  |
| 2         | 35300102           | 33.5 (1.32)  | 27.5 1.08)   |  |  |  |  |
| 3         | 35300103           | 44 (1.73)    | 38 (1.50)    |  |  |  |  |
| 4         | 35300104           | 54.5 (2.15)  | 48.5 (1.91)  |  |  |  |  |
| 5         | 35300105           | 65 (2.56)    | 59 (2.32)    |  |  |  |  |
| 6         | 35300106           | 75.5 (2.97)  | 69.5 (2.74)  |  |  |  |  |
| 7         | 35300107           | 86 (3.39)    | 80 (3.15)    |  |  |  |  |
| 8         | 35300108           | 96.5 (3.80)  | 90.5 (3.56)  |  |  |  |  |
| 9         | 35300109           | 107 (4.21)   | 101 (3.98)   |  |  |  |  |
| 10        | 35300110           | 117.5 (4.63) | 111.5 (4.39) |  |  |  |  |

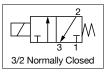
A: Blanking plate, cat. number 88135305

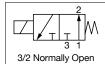


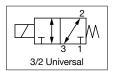


The connectors must be ordered separately, please indicate the quantity and one of the following codes: Connector, 2 wires:

Distance between contacts 5.08mm (0.2in)


- cat. no.: 88118801 Length 0.5m (19.7in)
- cat. no.: 88118802 Length 1.5m (59.1in)
- Length 3m (118in) - cat. no.: 88118803


Distance between contacts 2.54mm (0.1in)


- cat. no.: 88118806 Length 0.5m (19.7in)
- cat. no.: 88118807 - Length 1.5m (59.1in)
- cat. no.: 88118808 - Length 3m (118in)

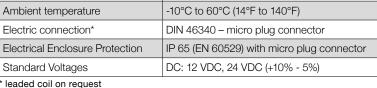
GENERAL SERVICE VALVES, 3-WAY UNIVERSAL

- The Series 226 3-way direct acting solenoid valve can be used with both liquids and gases
- Low power consumption, as well as latching coil versions, results in a decrease in OEM instrument power consumption as well as a decrease in heat transferred to the fluid media
- Small form-factor saves space in OEM instruments and are well-suited for portable and hand-held field devices
- Multiple electrical connection options offer greater flexibility in OEM instrument design and serviceability
- Meets all relevant CE directives, and is RoHS compliant
- Typical applications include:
  - Dental Equipment
  - Gas Chromatography
  - Industrial Analyzers
  - Respiratory Devices







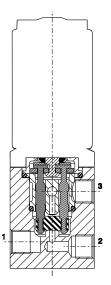



| Fluids*           | Temperature Range                                                        | Seal Materials* |
|-------------------|--------------------------------------------------------------------------|-----------------|
| Liquids and gases | -10°C to 90°C (14°F to 194°F) (NBR)<br>0°C to 90°C (32°F to 194°F) (FKM) | NBR or FKM      |

Ensure that the compatibility of the materials in contact with the fluids is verified.

| General Valve Information       |                                                 |  |  |  |  |  |  |
|---------------------------------|-------------------------------------------------|--|--|--|--|--|--|
| Body                            | Brass                                           |  |  |  |  |  |  |
| Internal components             | Brass, PEI (Polyetherimide) and stainless steel |  |  |  |  |  |  |
| Seat                            | 1 ↔ 2: Brass - 1 ↔ 3: PEI                       |  |  |  |  |  |  |
| Core tube                       | Brass                                           |  |  |  |  |  |  |
| Maximum allowable pressure (PS) | 16 bar (232 psi)                                |  |  |  |  |  |  |
| Response Time                   | <10ms                                           |  |  |  |  |  |  |
| Max viscosity                   | 3°E (22 cStokes or mm <sup>2</sup> /s)          |  |  |  |  |  |  |

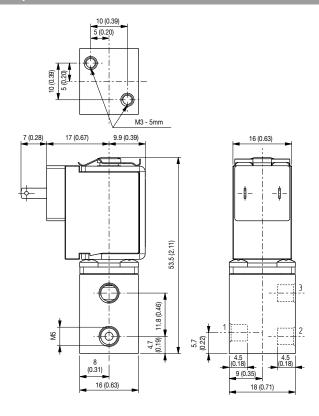
| Electrical Characteristics      |                                            |  |  |  |  |  |  |
|---------------------------------|--------------------------------------------|--|--|--|--|--|--|
| Continuous duty                 | ED 100%                                    |  |  |  |  |  |  |
| Encapsulation material          | PA (Polyamide) fiberglass reinforced       |  |  |  |  |  |  |
| Insulation class                | F (155°C)                                  |  |  |  |  |  |  |
| Ambient temperature             | -10°C to 60°C (14°F to 140°F)              |  |  |  |  |  |  |
| Electric connection*            | DIN 46340 – micro plug connector           |  |  |  |  |  |  |
| Electrical Enclosure Protection | IP 65 (EN 60529) with micro plug connector |  |  |  |  |  |  |
| Standard Voltages               | DC: 12 VDC, 24 VDC (+10% - 5%)             |  |  |  |  |  |  |




#### \* leaded coil on request

#### NOTE:

These micro-solenoid valves are not suitable for stagnating media subject to vaporization which deposit solid, calcareous, incrusting residues or similar. Sealings: NBR = Nitrile Butadiene Rubber FKM = Fluoro-carbon elastomer.


1 - For reference, F1 = 24 VDC; F3 = 12 VDC

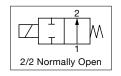


GENERAL SERVICE VALVES, 3-WAY UNIVERSAL

| Specifications                  |                                   |                               |        |          |         |          |                     |                  |         |         |          |                |                |     |     |
|---------------------------------|-----------------------------------|-------------------------------|--------|----------|---------|----------|---------------------|------------------|---------|---------|----------|----------------|----------------|-----|-----|
| Port<br>size<br>ISO UNI<br>4534 | Orifice<br>Size<br>mm<br>(inches) | Operating Pressure, bar (psi) |        |          |         |          |                     | Daway Abaayatian |         |         |          |                | Voltage        |     |     |
|                                 |                                   | Δp<br>min                     | Δp max |          |         | Kv       | Cv                  | Power Absorption |         |         | Caslings | Catalog Number | Voitage        |     |     |
|                                 |                                   |                               | Gases  |          | Liquids |          | (m <sup>3</sup> /h) | CV               | AC (VA) |         | DC       | Sealings       | Catalog Number | 12V | 24V |
|                                 |                                   |                               | AC     | DC       | AC      | DC       |                     |                  | Inrush  | Holding | (W)      |                |                | DC  | DC  |
| M5                              | 1.2<br>(0.047)                    | 0                             | 1      | 6 (87)   |         | 6 (87)   | 0.04                | 0.05             |         |         | 2.5      |                | H226A556S0A00  | F3  | F1  |
|                                 |                                   |                               |        | 8 (116)  |         | 8 (116)  |                     |                  |         |         | 4        |                | H226A557S0A00  | F3  | F1  |
|                                 |                                   |                               |        | 6 (87)   |         | 6 (87)   |                     |                  |         |         | 2.5      | NBR            | H226A559S0A00  | -   | F1  |
|                                 |                                   |                               |        | 8 (116)  |         | 8 (116)  |                     |                  |         |         | 4        |                | H226A560S0A00  | -   | F1  |
|                                 | 2<br>(0.079)                      |                               |        | 6 (87)   | -       | 6 (87)   |                     |                  | -       | -       | 4        |                | H226A566S0A00  | -   | F1  |
|                                 |                                   |                               |        | 6 (87)   |         | 6 (87)   |                     |                  |         |         |          | FKM            | H226A562S0A00  | -   | F1  |
|                                 |                                   |                               |        | 2.5 (36) |         | 2.5 (36) |                     | 0.09             |         |         |          | NBR            | H226A558S0A00  | -   | F1  |
|                                 |                                   |                               |        | 1.5 (22) |         | 1.5 (22) |                     |                  |         |         |          |                | H226A567S0A00  | F3  | -   |
|                                 |                                   |                               |        | 1.5 (22) |         | 1.5 (22) |                     |                  |         |         | FKM      | H226A563S0A00  | F3             | -   |     |

#### **Dimensions: mm (inches)**




#### Installation

Solenoid valve can be mounted in any position; vertical with coil upwards preferred.

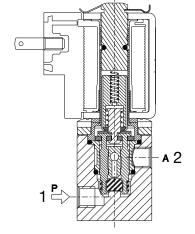
It is necessary to keep the current circulating in the coil constant, so as to maintain the solenoid valve in any pre-determined position. In case the solenoid valve is energised by voltage variation, it has to be considered that the resistance of winding increases because of the continued energizing and consequently the power decreases. Therefore, it is necessary to compensate such power decrease by increasing the voltage to re-establish the initial current value.

#### GENERAL SERVICE VALVES, 2-WAY NORMALLY OPEN

- The Series 226 direct acting solenoid valve can be used with both liquids and gases
- Low power versions (0.5W), and latching coil versions (power consumption close to zero) results in a decrease in OEM instrument power consumption as well as a decrease in heat transferred to the fluid media
- Small form-factor saves space in OEM instruments and are well-suited for portable and hand-held field devices
- Multiple electrical connection options offer greater flexibility in OEM instrument design and serviceability
- Meets all relevant CE directives, and is RoHS compliant
- Typical applications include:
  - Dental Equipment
  - Gas Chromatography
  - Industrial Analyzers
  - Respiratory Devices






| Fluids*           | Temperature Range           | Seal Materials* |  |  |
|-------------------|-----------------------------|-----------------|--|--|
| Liquids and gases | -10°C +90°C (14°F to 194°F) | NBR             |  |  |

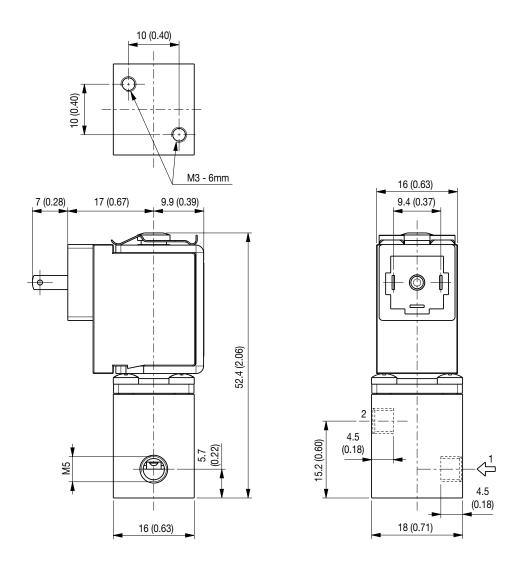
<sup>\*</sup> Ensure that the compatibility of the materials in contact with the fluids is verified.

| General Valve Information       |                                                 |  |  |  |  |  |  |
|---------------------------------|-------------------------------------------------|--|--|--|--|--|--|
| Body                            | Brass                                           |  |  |  |  |  |  |
| Sealing                         | NBR                                             |  |  |  |  |  |  |
| Internal components             | Brass, PEI (Polyetherimide) and stainless steel |  |  |  |  |  |  |
| Seat                            | PEI                                             |  |  |  |  |  |  |
| Core tube                       | Brass                                           |  |  |  |  |  |  |
| Maximum allowable pressure (PS) | 16 bar (232 psi)                                |  |  |  |  |  |  |
| Response Time                   | <10ms                                           |  |  |  |  |  |  |
| Fluid temperature               | -10°C +90°C (14°F to 194°F)                     |  |  |  |  |  |  |
| Max viscosity                   | 3°E (22 cStokes or mm <sup>2</sup> /s)          |  |  |  |  |  |  |

| Electrical Characteristics      |                                            |  |  |  |  |  |  |
|---------------------------------|--------------------------------------------|--|--|--|--|--|--|
| Continuous duty                 | ED 100%                                    |  |  |  |  |  |  |
| Encapsulation material          | PA (Polyamide) fiberglass reinforced       |  |  |  |  |  |  |
| Coil insulation class           | F (155°C)                                  |  |  |  |  |  |  |
| Ambient temperature             | -10°C to 60°C (14°F to 140°F)              |  |  |  |  |  |  |
| Electric connection*            | DIN 46340                                  |  |  |  |  |  |  |
| Electrical Enclosure Protection | IP 65 (EN 60529) with micro plug connector |  |  |  |  |  |  |
| Voltages DC                     | 12 VDC, 24 VDC (-5%/+10%)                  |  |  |  |  |  |  |

<sup>\*</sup> leaded coil on request



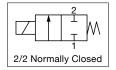

| Specifications |           |           |          |          |     |             |                     |        |             |                |         |       |                                |         |         |
|----------------|-----------|-----------|----------|----------|-----|-------------|---------------------|--------|-------------|----------------|---------|-------|--------------------------------|---------|---------|
| Port           |           |           | ır (psi) | Flo      |     | Pow         | er abso             | rption |             | Catalog Number | Voltage |       |                                |         |         |
| size<br>ISO-   | Size      |           |          | Δp r     | max |             |                     |        | Cv AC. (VA) |                | Seals   |       |                                |         |         |
| UNI            | (mm)      | Δp<br>min | C        | Gases    | Lic | quids       | (m <sup>3</sup> /h) | Cv     |             |                | DC. (W) | (14/) | Valve                          | 12V     | 24V     |
| 4534           |           |           | AC       | DC       | AC  | DC          | (111-711)           |        | Inrush      | Holding        | DC. (W) |       | valve                          | DC      | DC      |
| ME             | 1 (0.039) | 0         |          | 10 (145) |     | 10<br>(145) | 0.04                | 0.05   |             |                | 4       | NBR   | H226A554S0A00<br>H226A554S0A00 | F3<br>- | -<br>F1 |
| M5 2 (0.079)   | 2 (0.079) | ).079)    | -        | 3.5 (51) | -   | 3.5<br>(51) | 0.10                | 0.12   | -           | -              | 4       | NDM   | H226A555S0A00<br>H226A555S0A00 | F3<br>- | -<br>F1 |

These micro-solenoid valves are not suitable for stagnating media subject to vaporization which deposit solid, calcareous, incrusting residues or similar. Seal: NBR = Nitrile Butadiene Rubber

1 - For reference, F1 = 24 VDC; F3 = 12 VDC

# ASCO™ MINIATURE SOLENOID VALVES GENERAL SERVICE VALVES, 2-WAY NORMALLY OPEN

#### **Dimensions: mm (inches)**




#### **Mounting**

• Solenoid valve can be mounted in any position; vertical with coil upwards preferred.

#### GENERAL SERVICE VALVES, 2-WAY NORMALLY CLOSED - HIGH PRESSURE

- The Series 226 direct acting solenoid valve can be used with both liquids and gases
- Low power versions (0.5W), and latching coil versions (power consumption close to zero) results in a decrease in OEM instrument power consumption as well as a decrease in heat transferred to the fluid media
- Small form-factor saves space in OEM instruments and are well-suited for portable and hand-held field devices
- Multiple electrical connection options offer greater flexibility in OEM instrument design and serviceability
- Meets all relevant CE directives, and is RoHS compliant
- Typical applications include:
  - Dental Equipment
  - Gas Chromatography
  - Industrial Analyzers
  - Respiratory Devices





| Fluids*           | Temperature Range                                                                                                 | Seal Materials*     |
|-------------------|-------------------------------------------------------------------------------------------------------------------|---------------------|
| Liquids and gases | 0°C to 130°C (32°F to 266°F) (FKM)<br>0°C to 140°C (32°F to 284°F) (FFKM)<br>-10°C to 90°C (14°F to 194°F) (HNBR) | FKM or FFKM or HNBR |

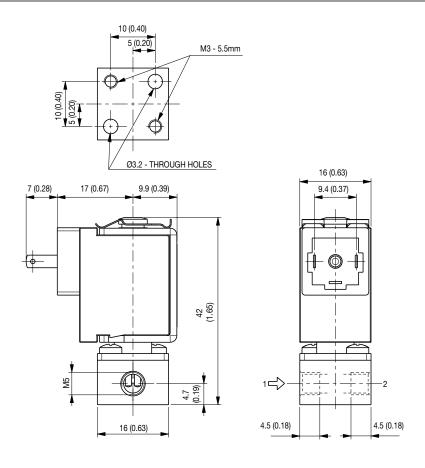
<sup>\*</sup> Ensure that the compatibility of the materials in contact with the fluids is verified.

| General Valve Information       |                                        |  |  |  |  |  |  |  |
|---------------------------------|----------------------------------------|--|--|--|--|--|--|--|
| Body                            | Brass                                  |  |  |  |  |  |  |  |
| Internal components             | Stainless Steel                        |  |  |  |  |  |  |  |
| Maximum allowable pressure (PS) | 16 bar (232 psi)                       |  |  |  |  |  |  |  |
| Response Time                   | <10ms                                  |  |  |  |  |  |  |  |
| Max viscosity                   | 3°E (22 cStokes or mm <sup>2</sup> /s) |  |  |  |  |  |  |  |
| Guide assembly                  | Stainless Steel                        |  |  |  |  |  |  |  |

| Electrical Characteristics      |                                           |  |  |  |  |  |  |  |
|---------------------------------|-------------------------------------------|--|--|--|--|--|--|--|
| Continuous duty                 | ED 100%                                   |  |  |  |  |  |  |  |
| Encapsulation material          | PA (Polyamide) fiberglass reinforced      |  |  |  |  |  |  |  |
| Coil insulation class           | F (155°C)                                 |  |  |  |  |  |  |  |
| Ambient temperature             | -10°C to 60°C (14°F to 140°F)             |  |  |  |  |  |  |  |
| Electric connection*            | DIN 46340                                 |  |  |  |  |  |  |  |
| Electrical Enclosure Protection | IP65 (EN 60529) with plug micro-connector |  |  |  |  |  |  |  |
| Standard Voltages               | DC: 12 VDC, 24 VDC<br>(+10% - 5%)         |  |  |  |  |  |  |  |

<sup>\*</sup> leaded coil on request

#### NOTE:


These micro-solenoid valves are not suitable for stagnating media subject to vaporization which deposit solid, calcareous, incrusting residues or similar. Seal: FKM = Fluoro-carbon elastomer FFKM = Perfluorate elastomer HNBR = Hydrogenated nitrile-butylene elastomer

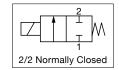


# ASCO™ MINIATURE SOLENOID VALVES GENERAL SERVICE VALVES, 2-WAY NORMALLY CLOSED - HIGH PRESSURE

| Specifi | Specifications  |           |                              |               |               |               |               |      |              |             |     |          |                  |               |        |
|---------|-----------------|-----------|------------------------------|---------------|---------------|---------------|---------------|------|--------------|-------------|-----|----------|------------------|---------------|--------|
|         |                 | Оре       | Operating Pressure bar (psi) |               |               |               |               |      | Power Rating |             |     |          |                  | Voltage       |        |
| Con-    | Orifice<br>Size |           |                              | Δр            | max           |               | Kv            | 0    | FO           | wei natilig |     | 0        | Ostala a Namahan | Voit          | aye    |
| nection | mm<br>(inches)  | Δp<br>min | G                            | Gases         |               | Liquids       |               | Cv   | AC           | (VA)        | DC  | Sealings | Catalog Number   | 12V DC        | 041/00 |
|         | (               |           | AC                           | DC            | AC            | DC            |               |      | Inrush       | Holding     | (W) |          |                  | 12V DC        | 24V DC |
|         |                 | 0         |                              | 0.5<br>(7.25) |               | 0.5<br>(7.25) |               | 0.05 |              |             | 0.5 |          | H226A540S0A00    | F3            | -      |
|         |                 |           |                              | 10            |               | 10            | 0.04          |      |              |             | 2.5 | FKM      | H226A542S0A00    | -             | F1     |
|         | 1.1<br>(0.043)  |           |                              | (145)         |               | (145)         |               |      |              |             | 2.0 | ]        | H226A541S0A00    | F3            | F1     |
| M5      |                 |           |                              |               | 14            | ļ <u> </u>    | 14            |      | _            | _           | 4   |          | H226A543S0A00    | F3            | F1     |
| IVIO    |                 |           | -                            | (203)         |               | (203)         |               |      |              |             | 4   | HNBR     | H226A564S0A00    | -             | F1     |
|         | 2               |           |                              |               | 1.5<br>(21.8) |               | 1.5<br>(21.8) |      |              |             |     | 2.5      | FKM              | H226A549S0A00 | -      |
|         | (0.079)         |           |                              | 4             |               | 4             | 0.10          | 0.12 |              |             | 4   |          | H226A551S0A00    | F3            | F1     |
|         |                 |           |                              | (58)          |               | (58)          |               |      |              |             | 4   | FFKM     | H226A552S0X00    | -             | F1     |

#### **Dimensions: mm (inches)**




#### **Mounting**

• Solenoid valve can be mounted in any position; vertical with coil upwards preferred.

ASCO

#### GENERAL SERVICE VALVES, 2-WAY NORMALLY CLOSED - PROPORTIONAL INLINE

- Series 226 proportional valves are designed to proportionally control the flow of neutral and aggressive liquids and gases by varying the electrical input signal to the coil
- Optional manual set-screw version available to optimize flow rate / electrical signal
- Reduced heat transfer between control mechanism and fluid make them ideal for use with heat-sensitive reagents and biological samples
- Small form-factor saves space in OEM instruments and are well-suited for portable and hand-held field devices
- Multiple electrical connection options and a rotatable coil create greater flexibility in OEM instrument design and serviceability
- Various connections are available so that the valve can easily be integrated into virtually any fluidic path
- Meets all relevant CE directives, and is RoHS compliant
- Typical applications include:
  - Dental Equipment
  - Gas Chromatography
  - Industrial Analyzers
  - Respiratory Devices



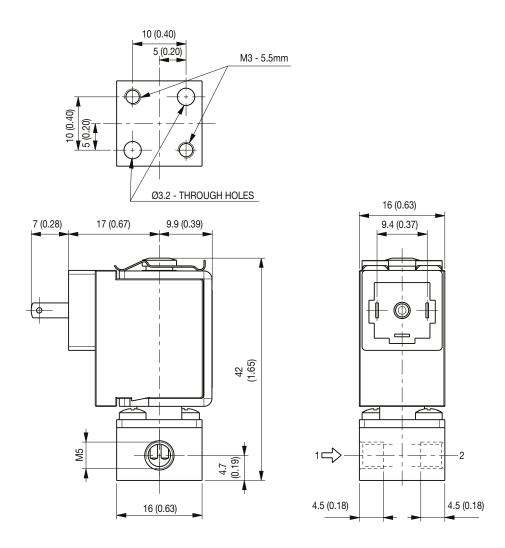


| Fluids*           | Temperature Range           | Seal Materials* |  |  |
|-------------------|-----------------------------|-----------------|--|--|
| Liquids and gases | -10°C +90°C (14°F to 194°F) | NBR             |  |  |

<sup>\*</sup> Ensure that the compatibility of the materials in contact with the fluids is verified.

| General Valve Information       |                                        |  |  |  |  |  |  |
|---------------------------------|----------------------------------------|--|--|--|--|--|--|
| Body                            | Brass                                  |  |  |  |  |  |  |
| Internal components             | Stainless steel                        |  |  |  |  |  |  |
| Seat                            | Brass                                  |  |  |  |  |  |  |
| Core tube                       | Stainless steel                        |  |  |  |  |  |  |
| Maximum allowable pressure (PS) | 16 bar (232 psi)                       |  |  |  |  |  |  |
| Max viscosity                   | 3°E (22 cStokes or mm <sup>2</sup> /s) |  |  |  |  |  |  |

| Electrical Characteristics       |                                            |  |  |  |  |  |  |  |
|----------------------------------|--------------------------------------------|--|--|--|--|--|--|--|
| Continuous duty                  | ED 100%                                    |  |  |  |  |  |  |  |
| Encapsulation material           | PA (Polyamide) fiberglass reinforced       |  |  |  |  |  |  |  |
| Insulation class                 | F (155°C)                                  |  |  |  |  |  |  |  |
| Ambient temperature              | -10°C to 60°C (14°F to 140°F)              |  |  |  |  |  |  |  |
| Electric connection <sup>1</sup> | DIN 46340                                  |  |  |  |  |  |  |  |
| Protection degree                | IP 65 (EN 60529) with micro plug connector |  |  |  |  |  |  |  |
| Voltages2                        | 12 VDC, 24 VDC (-5%/+10%)                  |  |  |  |  |  |  |  |


<sup>1</sup> leaded coil on request

<sup>&</sup>lt;sup>2</sup> other voltages on request.

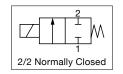
| Specif                               | Specifications |                    |           |                        |          |              |          |     |       |                                                                  |                    |                    |  |  |
|--------------------------------------|----------------|--------------------|-----------|------------------------|----------|--------------|----------|-----|-------|------------------------------------------------------------------|--------------------|--------------------|--|--|
| Port                                 | Orifice        | Operating Pressure |           | Flow Coe               | fficient | Power Rating |          |     | Seals | Series and Type Voltage                                          |                    | tage               |  |  |
| size<br>ISO-UNI<br>4534 Size<br>(mm) | Size           | bar (              | bar (psi) |                        | AC.      |              | .C. (VA) |     |       | ., .                                                             | 12V DC             | 24V DC             |  |  |
|                                      | (mm)           | Min                | Max       | Kv (m <sup>3</sup> /h) | Cv       | Inrush       | Holding  | (W) |       | Valve                                                            | 124 DC             | 24 <b>V</b> DC     |  |  |
| M5                                   | 1.6            | 0.5 (7.25)         | 5 (72.5)  | 0.04                   | 0.05     | -            | -        | 4   | NBR   | H226A546S0A00<br>H226A546S0A00<br>H226A547S0A00<br>H226A547S0A00 | F3<br>-<br>F3<br>- | -<br>F1<br>-<br>F1 |  |  |
|                                      |                | 0.2 (2.90)         | 3 (43.5)  |                        |          |              |          | 2.5 |       | H226A545S0A00<br>H226A545S0A00                                   | F3<br>-            | -<br>F1            |  |  |

GENERAL SERVICE VALVES, 2-WAY NORMALLY CLOSED - PROPORTIONAL INLINE

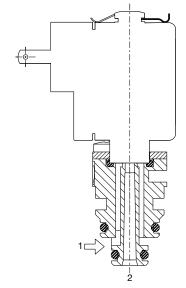
#### **Dimensions: mm (inches)**



#### Installation


• Solenoid valve can be mounted in any position; vertical with coil upwards preferred.

#### NOTE:


- These micro-solenoid valves are not suitable for stagnating media subject to vaporization which deposit solid, calcareous, incrusting residues or similar.
- Seal: NBR = Nitrile butylene elastomer. Other options available on request
- It is necessary to keep the current circulating in the coil constant, so as to maintain the solenoid valve in any pre-determined position. In case the solenoid valve is energised by voltage variation, it has to be considered that the resistance of winding increases because of the continued energizing and consequently the power decreases. Therefore, it is necessary to compensate such power decrease by increasing the voltage to re-establish the initial current value.

#### GENERAL SERVICE VALVES, 2-WAY NORMALLY CLOSED - CARTRIDGE

- The Series 226 direct acting solenoid valve can be used with both liquids and gases
- Low power versions (0.5W), and latching coil versions (power consumption close to zero) results in a decrease in OEM instrument power consumption as well as a decrease in heat transferred to the fluid media
- Small form-factor saves space in OEM instruments and are well-suited for portable and hand-held field devices
- Multiple electrical connection options and a rotatable coil create greater flexibility in OEM instrument design and serviceability
- Various connections are available so that the valve can easily be integrated into virtually any fluidic path
- Meets all relevant CE directives, and is RoHS compliant
- Typical applications include:
  - Dental Equipment
  - Gas Chromatography
  - Industrial Analyzers
  - Respiratory Devices



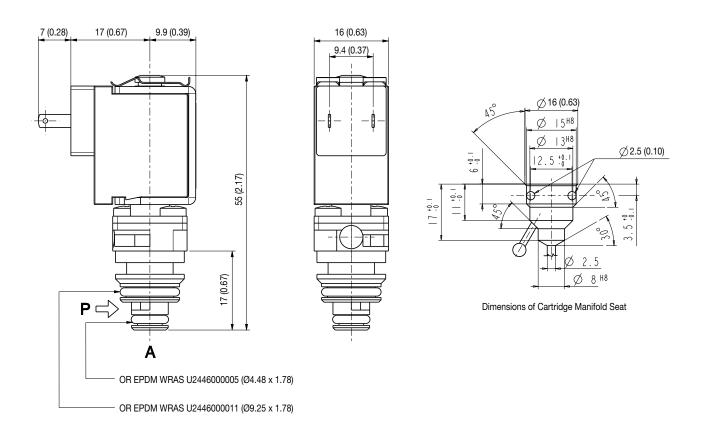




| Fluids*           | Temperature Range              | Seal Materials* |  |  |  |
|-------------------|--------------------------------|-----------------|--|--|--|
| Liquids and gases | -10°C to 100°C (14°F to 212°F) | EPDM            |  |  |  |

<sup>\*</sup> Ensure that the compatibility of the materials in contact with the fluids is verified.

| General Valve Information  |                                        |  |  |  |  |  |  |  |  |
|----------------------------|----------------------------------------|--|--|--|--|--|--|--|--|
| Body                       | POM                                    |  |  |  |  |  |  |  |  |
| Internal components        | Stainless steel                        |  |  |  |  |  |  |  |  |
| Seat                       | POM                                    |  |  |  |  |  |  |  |  |
| Core tube                  | Stainless steel                        |  |  |  |  |  |  |  |  |
| Maximum allowable pressure | 16 bar (232 psi)                       |  |  |  |  |  |  |  |  |
| Response Time              | <10ms                                  |  |  |  |  |  |  |  |  |
| Max viscosity              | 3°E (22 cStokes or mm <sup>2</sup> /s) |  |  |  |  |  |  |  |  |


| Electrical Characteristics      |                                            |  |  |  |  |  |  |  |  |
|---------------------------------|--------------------------------------------|--|--|--|--|--|--|--|--|
| Continuous duty                 | ED 100%                                    |  |  |  |  |  |  |  |  |
| Encapsulation material          | PA (Polyamide) fiberglass reinforced       |  |  |  |  |  |  |  |  |
| Ambient temperature             | -10°C to 60°C (14°F to 140°F)              |  |  |  |  |  |  |  |  |
| Electric connection*            | DIN 46340                                  |  |  |  |  |  |  |  |  |
| Electrical Enclosure Protection | IP 65 (EN 60529) with micro plug connector |  |  |  |  |  |  |  |  |
| Standard Voltages               | 12 VDC, 24 VDC (-5%/+10%)                  |  |  |  |  |  |  |  |  |

<sup>\*</sup> leaded coil on request

| Specifications |                      |     |          |           |        |           |                     |      |               |         |   |       |                |         |        |
|----------------|----------------------|-----|----------|-----------|--------|-----------|---------------------|------|---------------|---------|---|-------|----------------|---------|--------|
|                |                      | Ope | rating F | Pressu    | re bar | (psi)     | Flow Coefficient    |      | Downey Detine |         |   |       | Catalog Number | Voltage |        |
|                | Orifice Size Ap max. |     |          |           |        |           |                     |      |               |         |   |       |                |         |        |
| Connection     | SIZE                 | Ар  | Gas      | ses       | Liq    | uids      | Kv                  | Cv   | AC            | AC (VA) |   | Seals | Valve          | 12V DC  | 24V DC |
|                | mm<br>(inches)       | min | AC       | DC        | AC     | DC        | (m <sup>3</sup> /h) |      | Inrush        | Holding | w |       | Valve          |         |        |
| -              | 2<br>(0.079)         | 0   | -        | 6<br>(87) | -      | 6<br>(87) | 0.10                | 0.12 | -             | -       | 4 | EPDM  | P226A550S0A00  | F3      | F1     |

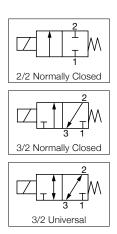
GENERAL SERVICE VALVES, 2-WAY NORMALLY CLOSED - CARTRIDGE

#### Dimensions: mm (inches)



#### Installation

• Solenoid valve can be mounted in any position; vertical with coil upwards preferred.


#### NOTE:

- These micro-solenoid valves are not suitable for stagnating media subject to vaporization which deposit solid, calcareous, incrusting residues or similar.
- Sealings: EPDM = WRAS approved ethylene-propylene elastomer

01079GB-2019-R01

#### **GENERAL SERVICE VALVES**

- The 411 Series solenoid valves are designed for use with air and inert gases
- Manifold mount construction that is suitable for a wide variety of gas applications
- Compact light-weight architecture and low power consumption make them ideal for portable medical devices
- Exceptional service lifetime over 100 million cycles that increases OEM instrument reliability
- Meets all relevant CE directives, and is RoHS compliant
- Typical applications include:
  - Respiratory Therapy
  - Patient Monitoring
  - Compression Therapy (DVT)
  - Robotic Pharmacy Dispensing



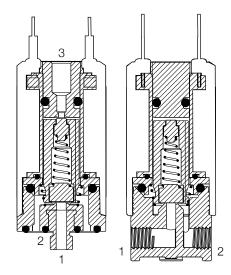


| Fluids                            | Temperature Range                  | Seal Materials |  |  |  |
|-----------------------------------|------------------------------------|----------------|--|--|--|
| Air or Inert Gas, non-lubricated1 | -23 °C to 60 °C (-10 °F to 140 °F) | FKM, NBR, EDPM |  |  |  |

<sup>1</sup> filtered at 10 µm

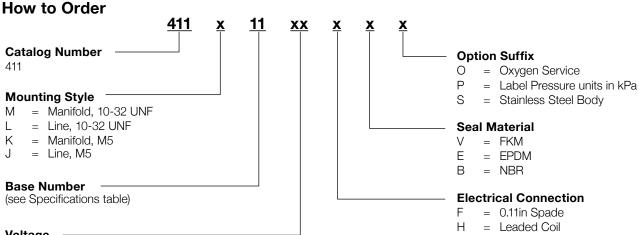
NOTE: Additional constructions and options are available including alternate elastomers and orifice sizes. Minimum quantities apply.

| General Valve Information* |                                                                |  |  |  |  |  |  |  |
|----------------------------|----------------------------------------------------------------|--|--|--|--|--|--|--|
| Body                       | PBT, 300 Series stainless steel                                |  |  |  |  |  |  |  |
| Others                     | PBT, 400 Series stainless steel,<br>300 Series stainless steel |  |  |  |  |  |  |  |
| Response Time              | < 10ms                                                         |  |  |  |  |  |  |  |
| Vacuum Rating              | -0.9 bar (-13 psi)                                             |  |  |  |  |  |  |  |


<sup>\*</sup> Other materials on request

| Electrical Characteristics |                              |  |  |  |  |  |  |  |
|----------------------------|------------------------------|--|--|--|--|--|--|--|
| Standard Voltages*         | 5 VDC, 6 VDC, 12 VDC, 24 VDC |  |  |  |  |  |  |  |
| Power Consumption          | 0.65 to 2.0 W                |  |  |  |  |  |  |  |

<sup>\*</sup> Other voltages on request


NOTE: The solenoid valves are designed for continuous operation within the maximum ambient temperature limits.

| Insulation<br>Class | Coil<br>Insulation | Protection | Ambient<br>Temperature<br>Range | Electrical Connection             |  |  |
|---------------------|--------------------|------------|---------------------------------|-----------------------------------|--|--|
|                     | °C (°F)            | VA         | °C (°F)                         |                                   |  |  |
| В                   | 130<br>(266)       | -          | -23 to 60<br>(-10 to 140)       | 0.11in Spade,<br>24 AWG Lead Wire |  |  |



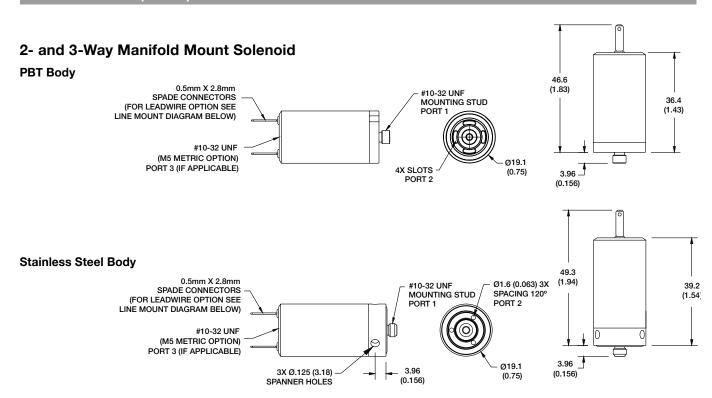
**GENERAL SERVICE VALVES** 

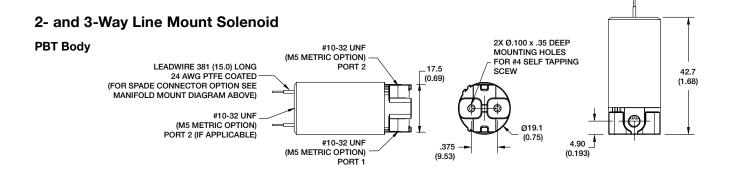
| Specificat      | ions         |        |         |           |        |            |                     |       |                |  |
|-----------------|--------------|--------|---------|-----------|--------|------------|---------------------|-------|----------------|--|
| Orifice<br>Size |              |        | Flow Co | efficient |        | -          | g Pressure<br>(psi) | Power |                |  |
| mm (i           | nches)       | Kv (r  | n³/h)   | Cv        |        | min.       | max.                |       | Catalog Number |  |
| Port 1          | Port 3       | Port 1 | Port 3  | Port 1    | Port 3 | 111111.    | max.                | W     |                |  |
| 2/2 NC - Norm   | ally Closed  |        |         |           |        |            |                     |       |                |  |
| 0.76 (0.030)    | -            | 0.022  | -       | 0.013     | -      | -0.9 (-13) | 6.9 (100)           | 0.65  | 411x11xxxx     |  |
| 1.4 (0.055)     | -            | 0.066  | -       | 0.040     | -      | -0.9 (-13) | 6.9 (100)           | 2.0   | 411x21xxxx     |  |
| 2.0 (0.080)     | -            | 0.116  | -       | 0.071     | -      | -0.9 (-13) | 2.1 (30)            | 2.0   | 411x31xxxx     |  |
| 3/2 NC - Norm   | ally Closed  |        | L       | L         | L      |            |                     |       |                |  |
| 0.76 (0.030)    | 0.63 (0.025) | 0.022  | 0.010   | 0.013     | 0.006  | -0.9 (-13) | 6.9 (100)           | 0.65  | 411x12xxxx     |  |
| 1.4 (0.055)     | 1.3 (0.050)  | 0.066  | 0.055   | 0.040     | 0.033  | -0.9 (-13) | 6.9 (100)           | 2.0   | 411x22xxxx     |  |
| 2.0 (0.080)     | 1.3 (0.050)  | 0.116  | 0.055   | 0.071     | 0.033  | -0.9 (-13) | 2.1 (30)            | 2.0   | 411x32xxxx     |  |
| 3/2 U - Univers | sal          |        |         |           |        |            |                     |       |                |  |
| 0.76 (0.030)    | 0.63 (0.025) | 0.022  | 0.010   | 0.013     | 0.006  | -0.9 (-13) | 6.9 (100)           | 0.65  | 411x13xxHx     |  |
| 1.4 (0.055)     | 1.3 (0.050)  | 0.066  | 0.055   | 0.040     | 0.033  | -0.9 (-13) | 3.4 (50)            | 2.0   | 411x23xxHx     |  |
| 2.0 (0.080)     | 1.3 (0.050)  | 0.116  | 0.055   | 0.071     | 0.033  | -0.9 (-13) | 2.1 (30)            | 2.0   | 411x33xxHx     |  |

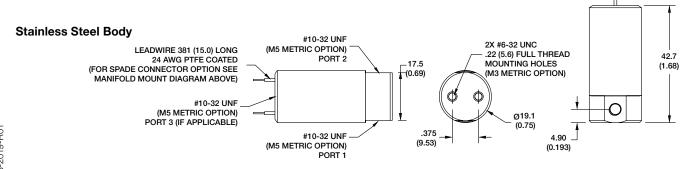


#### Voltage

12 = 12 VDC 24 = 24 VDC 05 = 5 VDC 06 = 6 VDC


NOTE: Oxygen Service valves available with FKM or EPDM Seals only. UL / CSA available with 300 Series Stainless Steel Body. 3-Way Universal operation only available with leaded coil electrical connection (H).


#### Ordering Examples:

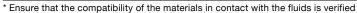

**411M1124FV** = 2-way normally closed manifold mount valve with 0.76mm (0.030in) orifice, 24 VDC coil rating at 0.65 Watts, .110 spade connection, FKM seals

411L3212HV = 3-way normally closed line mount valve with 2.0mm (0.080in) orifice, 12 VDC coil rating at 2.0 Watts, leaded coil, FKM seals
411K1124HVOS = 2-way normally closed manifold mount and M5 stud with 0.76mm (0.030in) orifice, 24 VDC coil rating at 0.65 Watts, leaded coil, FKM seals, clean for Oxygen use and Stainless Steel body

#### **Dimensions: mm (inches)**

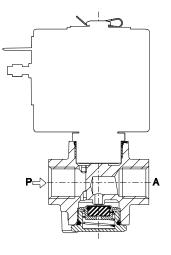







#### **GENERAL SERVICE VALVES**

- Direct acting solenoid valve, suitable for vacuum at port "P" (PA PP = 1 bar)
- Suitable to shut off liquid and gaseous fluids (verify the compatibility
  of fluid with materials in contact), particularly suitable in the
  applications in sterilising autoclaves.
- 2/2 Normally Open


- Typical applications include:
  - Oil burners
  - Air compressor
  - Water steam sterilizers,
  - Gas oil burners
  - Naphta burners

| General Valve Information |                                                                           |  |  |  |  |  |  |
|---------------------------|---------------------------------------------------------------------------|--|--|--|--|--|--|
| Body                      | Brass or chemically nickel coated (Ni-P) brass                            |  |  |  |  |  |  |
| Seals*                    | FKM, Stainless steel or CR70N                                             |  |  |  |  |  |  |
| Internal Components       | Stainless Steel                                                           |  |  |  |  |  |  |
| Seat                      | Brass or Stainless Steel                                                  |  |  |  |  |  |  |
| Core Tube                 | Stainless Steel                                                           |  |  |  |  |  |  |
| Shading coil              | Copper                                                                    |  |  |  |  |  |  |
| Fluids                    | Liquids or gases                                                          |  |  |  |  |  |  |
| Fluid temperature         | -10°C +170°C (stainless steel)<br>0°C +130°C (FKM)<br>-10°C +90°C (CR70N) |  |  |  |  |  |  |
| Differential pressure     | see "Specifications" [1 bar = 100 kPa]                                    |  |  |  |  |  |  |
| Response time             | ~ 20-30ms                                                                 |  |  |  |  |  |  |
| Max. Viscosity            | 37 cSt (mm²/s)                                                            |  |  |  |  |  |  |

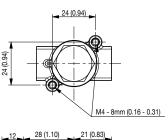


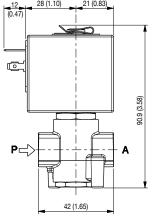
| Electrical Characteristics  |       |                                                                |                                                             |  |  |  |  |  |  |
|-----------------------------|-------|----------------------------------------------------------------|-------------------------------------------------------------|--|--|--|--|--|--|
|                             |       | ZA130A                                                         | ZA10A (UL class F - for UL cl.H: ZA34 (E153691))            |  |  |  |  |  |  |
| Continous duty              |       | ED 100%                                                        | ED 100%                                                     |  |  |  |  |  |  |
| Coil Insulation Class       |       | F (140°C), on request class H (165°C) - UL                     | F (155°C) on request class H (180°C)                        |  |  |  |  |  |  |
| Connector                   |       | DIN 46340 - 3 pole connector (DIN 43650)                       | DIN 46340 - 3 pole connector (DIN 43650)                    |  |  |  |  |  |  |
| Encapsulation material      |       | PET (polyethylene terephtalate) fiberglass reinforced          | PPS (polyphenilsulfure) fiberglass reinforced)              |  |  |  |  |  |  |
| Electrical Enclosure Protec | ction | Molded IP65 (EN 60529)                                         | IP67 (EN60529) with plug connector                          |  |  |  |  |  |  |
|                             | DC    | 12-24 V (+10% -5%)                                             | 12-24 V (+10% -5%)                                          |  |  |  |  |  |  |
| Standard Voltages *         | AC    | 24V/50Hz - 110V/50Hz<br>(120V/60Hz) - 230V/50Hz (+10%<br>-15%) | 24V/50Hz - 110V/50Hz (120V/60Hz) -<br>230V/50Hz (+10% -15%) |  |  |  |  |  |  |

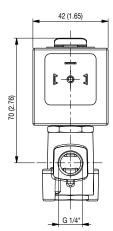




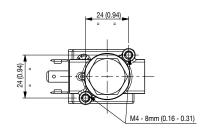
<sup>\*</sup>Other voltages and frequencies on request

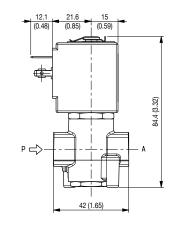

| Specifica          | Specifications |              |         |                        |       |         |              |         |           |             |       |                                                 |                    |                      |
|--------------------|----------------|--------------|---------|------------------------|-------|---------|--------------|---------|-----------|-------------|-------|-------------------------------------------------|--------------------|----------------------|
|                    | Orifice        | Orifice Flow |         | Operating Pressure bar |       | Р       | Power Rating |         | Catalog N | umber       |       |                                                 |                    |                      |
| Pipe<br>Connection | Size           |              | ficient |                        | m     | ах.     |              | (W)     |           | Threaded    | Body  | Body<br>Material                                | Seat<br>Materials  | Sealing<br>Materials |
| Connection         |                |              |         | min.                   | Gases | Liquids | AC           | (VA)    | DC (W)    | Tilleaded   | Бойу  | Waterial                                        | Waterials          | Waterials            |
|                    | mm             | Kv           | Cv      |                        | Gases | Liquius | Inrush       | Holding | DC (W)    |             | Coil  |                                                 |                    |                      |
|                    | 3              | 0.22         | 0.25    |                        | -     | 30      |              |         |           | L256M02     | Z130A | Brass                                           | Stainless<br>Steel | Stainless<br>Steel   |
| G 1/4              | 3.2            | 0.3          | 0.35    | 0                      | 12    | 10      | 44           | 24      | 13        | 1.050/04    |       |                                                 | Brass              | FIZM                 |
|                    | 4.5            | 0.45         | 0.52    |                        | 5     | 4       |              |         |           | L256V01     |       |                                                 |                    | FKM                  |
| G 1/4              | 3.2            | 0.3          | 0.35    | 0                      | 4     | 4       | 23           | 14      | 9         | L256V12 (*) | ZA10A | Chemically<br>nickel<br>coated (Ni-<br>P) brass | Stainless<br>Steel | FKM                  |
|                    | 4.5            | 0.45         | 0.52    |                        | 2.5   | 2.5     | 1            |         |           | L256V12     |       | Brass                                           |                    |                      |
| G1/8               | 1.6            | 0.08         | 0.09    | 0                      | 25    | 22      | 23           | 14      | 9         | L256N07     | ZA10A | Brass                                           | Brass              | CR70N                |
| 1/4 NPT            | 3.2            | 0.3          | 0.35    | 0                      | 12    | 10      | 44           | 24      | 13        | L256V09     | Z130A | Brass                                           | Brass              | FKM                  |

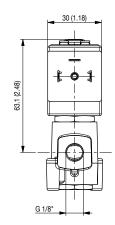

(\*) Only for use with steam, consider following values: max pressure 2.8 bar (max fluid temperature 130° C)


**GENERAL SERVICE VALVES** 

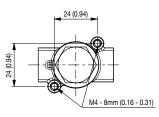
#### Dimensions: mm (inches)

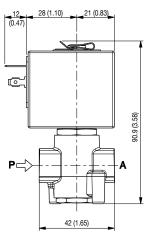

#### L256V01 / L256MO2

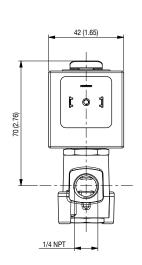


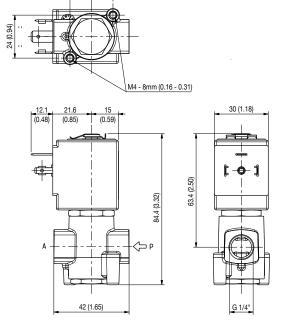




#### L256N07







#### L256V09







#### L256V12 / L256V14



#### SERIES L256

# **ASCO™ MINIATURE SOLENOID VALVES**

**GENERAL SERVICE VALVES** 

### **Spare Part Kits**

#### L256V01 / L256MO2

| Kit description           | Model         | Diameter     | Kit P.N.     | Consisting of:          |
|---------------------------|---------------|--------------|--------------|-------------------------|
|                           | L256M02       |              | G3093201     | Sealing group           |
| Core sealing assembly kit | L256V01       | Ø 3.2        | G3093101     | Sealing return spring   |
|                           | L256V01 Ø 4.5 |              | G3093104     | OR cap                  |
| OR guide assembly kit     |               |              | GU2424000017 | N°.10 OR guide assembly |
| OR cap kit                |               | GU2424000155 | N°.10 OR cap |                         |
| Coil                      |               |              | Z130A        | Coil                    |

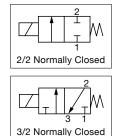
#### L256N07

| Kit description       | Kit P.N.     | Consisting of:                                   |
|-----------------------|--------------|--------------------------------------------------|
| Sealing assembly kit  | G3093103     | Sealing group<br>Sealing return spring<br>OR cap |
| OR guide assembly kit | GU2445000017 | N°.10 OR guide assembly                          |
| OR cap kit            | GU2445000155 | N°.10 OR cap                                     |
| Coil                  | ZA10A        | Coil                                             |

#### L256V09

| Kit description           | Kit P.N.     | Consisting of:                                   |
|---------------------------|--------------|--------------------------------------------------|
| Core sealing assembly kit | G3093101     | Sealing group<br>Sealing return spring<br>OR cap |
| OR guide assembly kit     | GU2424000017 | N°.10 OR guide assembly                          |
| OR cap kit                | GU2424000155 | N°.10 OR cap                                     |
| Coil                      | Z130A        | Coil                                             |

#### L256V12 / L256V14


| Kit description       | Kit P.N.     | Consisting of:          |
|-----------------------|--------------|-------------------------|
|                       |              | Sealing group           |
| Sealing assembly kit  | G3124301     | Sealing return spring   |
|                       |              | OR cap                  |
| OR guide assembly kit | GU2424000017 | N°.10 OR guide assembly |
| OR cap kit            | GU2424000155 | N°.10 OR cap            |
| Coil                  | ZA10A        | Coil                    |

#### Installation

• Solenoid valve can be mounted in any position; vertical with coil upwards preferred.

#### **GENERAL SERVICE VALVES**

- The RB Series solenoid valves are designed for use with air and inert gases
- Highly customizable construction that is suitable for a wide variety of gas applications
- Compact light-weight architecture and low power consumption make them ideal for portable medical devices
- Exceptional service lifetime over 100 million cycles that increases OEM instrument reliability
- Meets all relevant CE directives, and is RoHS compliant
- Typical applications include:
  - Respiratory Therapy
  - Patient Monitoring
  - Compression Therapy (DVT)
  - Robotic Pharmacy Dispensing





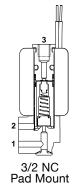
| Fluids*                       | Temperature Range               | Seal Materials* |
|-------------------------------|---------------------------------|-----------------|
| Air or Inert Gas <sup>1</sup> | 0 °C to 60 °C (32 °F to 140 °F) | FKM             |
| Air or mert Gas <sup>1</sup>  | 0 C t0 60 C (32 F t0 140 F)     | NBR             |

 $<sup>^{\</sup>rm 1}$  filtered at 10  $\mu m$ 

NOTE: Additional constructions and options are available including alternate elastomers and orifice sizes. Minimum quantities apply.

| General Valve Information |                   |  |  |  |
|---------------------------|-------------------|--|--|--|
| Body                      | PBT, brass        |  |  |  |
| Others                    | Stainless steel   |  |  |  |
| Response Time             | < 10ms            |  |  |  |
| Vacuum Rating             | -0.9 bar (13 psi) |  |  |  |

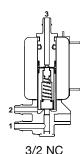
| Electrical Characteristics |                       |  |  |  |  |
|----------------------------|-----------------------|--|--|--|--|
| Standard Voltages*         | 5 VDC, 12 VDC, 24 VDC |  |  |  |  |
| Power Consumption          | 0.5 to 2.0 W          |  |  |  |  |


<sup>\*</sup> Other voltages on request

NOTE: The solenoid valves are designed for continuous operation within the maximum ambient temperature limits

| Insulation<br>Class | Coil<br>Insulation | Protection         | Ambient<br>Temperature<br>Range | Electrical Connection                       |
|---------------------|--------------------|--------------------|---------------------------------|---------------------------------------------|
|                     | °C (°F)            | VA                 | °C (°F)                         |                                             |
| В                   | 130<br>(266)       | IP30<br>(EN 60529) | 0 to 60<br>(32 to 140)          | Lead wires 26 AWG or circuit<br>board mount |



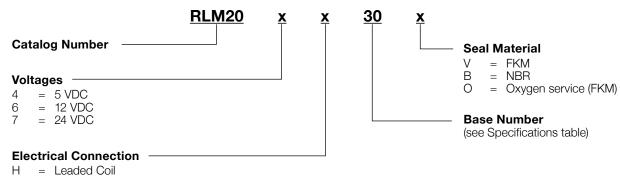

2/2 NC Manifold Mount



3/2 NC Push-in Hose Connection



2/2 NC Line Mount

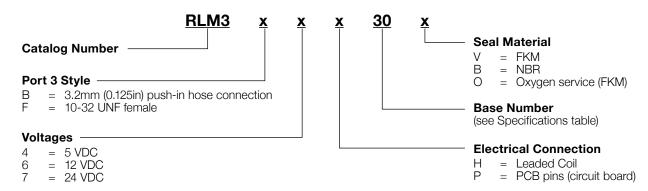



<sup>\*</sup> Ensure that the compatibility of the materials in contact with the fluids is verified.

**GENERAL SERVICE VALVES** 

| Specifications          | Orifice Size | Orifice Size Flow         |       |            | ing Pressure<br>ar (psi) | Power  |                |  |
|-------------------------|--------------|---------------------------|-------|------------|--------------------------|--------|----------------|--|
| Connection              |              | Coefficient               |       | min.       | max.                     | Rating | Catalog Number |  |
|                         | mm (inches)  | Kv (m <sup>3</sup> /h) Cv |       | 111111.    | air, inert gas           | W      |                |  |
| 2/2 NC - Normally (     | Closed       |                           |       |            |                          |        |                |  |
|                         | 0.8 (0.031)  | 0.018                     | 0.011 | -0.9 (-13) | 3.4 (50)                 | 0.5    | RLM20xx30x     |  |
|                         | 0.8 (0.031)  | 0.018                     | 0.011 | -0.9 (-13) | 6.9 (100)                | 2.0    | RHM20xx30x     |  |
| 10-32 UNF Stud Manifold | 1.30 (0.051) | 0.066                     | 0.030 | -0.9 (-13) | 1.0 (15)                 | 0.5    | RLM20xx50x     |  |
| Mount, Brass (M)        | 1.30 (0.051) | 0.058                     | 0.033 | -0.9 (-13) | 3.4 (50)                 | 1.0    | RMM20xx50x     |  |
|                         | 1.30 (0.051) | 0.058                     | 0.033 | -0.9 (-13) | 6.9 (100)                | 2.0    | RHM20xx50x     |  |
|                         | 2.00 (0.079) | 0.097                     | 0.056 | -0.9 (-13) | 1.0 (15)                 | 2.0    | RHM20xx80x     |  |
|                         | 0.8 (0.031)  | 0.018                     | 0.011 | -0.9 (-13) | 3.4 (50)                 | 0.5    | RLL20xx30x     |  |
|                         | 0.8 (0.031)  | 0.018                     | 0.011 | -0.9 (-13) | 6.9 (100)                | 2.0    | RHL20xx30x     |  |
| 10-32 UNF Female Line   | 1.30 (0.051) | 0.066                     | 0.030 | -0.9 (-13) | 1.0 (15)                 | 0.5    | RLL20xx50x     |  |
| Mount, Brass (L)        | 1.30 (0.051) | 0.058                     | 0.033 | -0.9 (-13) | 3.4 (50)                 | 1.0    | RML20xx50x     |  |
|                         | 1.30 (0.051) | 0.058                     | 0.033 | -0.9 (-13) | 6.9 (100)                | 2.0    | RHL20xx50x     |  |
|                         | 2.00 (0.079) | 0.097                     | 0.056 | -0.9 (-13) | 1.0 (15)                 | 2.0    | RHL20xx80x     |  |
|                         | 0.8 (0.031)  | 0.026                     | 0.010 | -0.9 (-13) | 1.0 (15)                 | 0.5    | RLB20xx30x     |  |
|                         | 0.8 (0.031)  | 0.018                     | 0.011 | -0.9 (-13) | 3.4 (50)                 | 1.0    | RMB20xx30x     |  |
| 3.17mm (0.125in)        | 0.8 (0.031)  | 0.018                     | 0.011 | -0.9 (-13) | 6.9 (100)                | 2.0    | RHB20xx30x     |  |
| Push-in Hose Connecton  | 1.30 (0.051) | 0.079                     | 0.031 | -0.9 (-13) | 0.7 (10)                 | 0.5    | RLB20xx50x     |  |
| PBT (B)                 | 1.30 (0.051) | 0.058                     | 0.033 | -0.9 (-13) | 2.4 (35)                 | 1.0    | RMB20xx50x     |  |
| Ī                       | 1.30 (0.051) | 0.058                     | 0.033 | -0.9 (-13) | 4.8 (70)                 | 2.0    | RHB20xx50x     |  |
|                         | 2.00 (0.079) | 0.097                     | 0.056 | -0.9 (-13) | 1.7 (25)                 | 2.0    | RHB20xx80x     |  |
|                         | 0.8 (0.031)  | 0.026                     | 0.010 | -0.9 (-13) | 1.0 (15)                 | 0.5    | RLF20xx30x     |  |
|                         | 0.8 (0.031)  | 0.018                     | 0.011 | -0.9 (-13) | 3.4 (50)                 | 1.0    | RMF20xx30x     |  |
|                         | 0.8 (0.031)  | 0.018                     | 0.011 | -0.9 (-13) | 6.9 (100)                | 2.0    | RHF20xx30x     |  |
| Pad Mount, PBT (F)      | 1.30 (0.051) | 0.079                     | 0.031 | -0.9 (-13) | 0.7 (10)                 | 0.5    | RLF20xx50x     |  |
|                         | 1.30 (0.051) | 0.058                     | 0.033 | -0.9 (-13) | 2.4 (35)                 | 1.0    | RMF20xx50x     |  |
|                         | 1.30 (0.051) | 0.058                     | 0.033 | -0.9 (-13) | 4.8 (70)                 | 2.0    | RHF20xx50x     |  |
|                         | 2.00 (0.079) | 0.097                     | 0.056 | -0.9 (-13) | 1.7 (25)                 | 2.0    | RHF20xx80x     |  |

#### **How to Order**




P = PCB pins (circuit board)

**GENERAL SERVICE VALVES** 

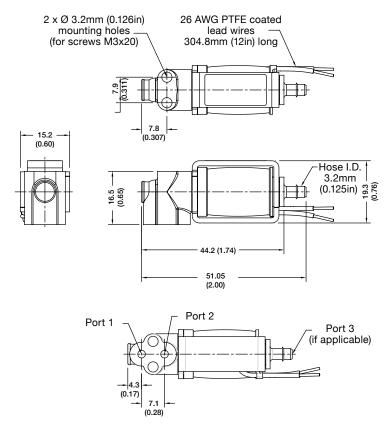
|                                         | Orifice Size |             | Flow Coefficient |                    |        |        | Operating Pressure bar (psi) |                | Power |                |
|-----------------------------------------|--------------|-------------|------------------|--------------------|--------|--------|------------------------------|----------------|-------|----------------|
| Connection                              | mm (ir       | nches)      | Kv (r            | n <sup>3</sup> /h) | C      | v      | min.                         | max.           | Coil  | Catalog Number |
|                                         | Port 1       | Port 3      | Port 1           | Port 3             | Port 1 | Port 3 | 111111.                      | air, inert gas | W     |                |
| 3/2 NC - Norma                          | lly Closed   |             |                  |                    |        |        |                              |                |       |                |
|                                         | 0.8 (0.031)  | 1.0 (0.040) | 0.018            | 0.031              | 0.011  | 0.018  | -0.9 (-13)                   | 3.4 (50)       | 0.5   | RLM3xxx34x     |
|                                         | 0.8 (0.031)  | 1.0 (0.040) | 0.018            | 0.031              | 0.011  | 0.018  | -0.9 (-13)                   | 6.9 (100)      | 2.0   | RHM3xxx34x     |
| 10-32 UNF Stud<br>Manifold Mount, Brass | 1.30 (0.051) | 1.3 (0.051) | 0.066            | 0.052              | 0.030  | 0.024  | -0.9 (-13)                   | 1.0 (15)       | 0.5   | RLM3xxx55x     |
| (M)                                     | 1.30 (0.051) | 1.3 (0.051) | 0.058            | 0.050              | 0.033  | 0.029  | -0.9 (-13)                   | 3.4 (50)       | 1.0   | RMM3xxx55x     |
|                                         | 1.30 (0.051) | 1.3 (0.051) | 0.058            | 0.050              | 0.033  | 0.029  | -0.9 (-13)                   | 6.9 (100)      | 2.0   | RHM3xxx55x     |
|                                         | 2.00 (0.079) | 1.3 (0.051) | 0.097            | 0.050              | 0.056  | 0.029  | -0.9 (-13)                   | 1.7 (25)       | 2.0   | RHM3xxx85x     |
|                                         | 0.8 (0.031)  | 1.0 (0.040) | 0.018            | 0.031              | 0.011  | 0.018  | -0.9 (-13)                   | 3.4 (50)       | 0.5   | RLL3xxx34x     |
|                                         | 0.8 (0.031)  | 1.0 (0.040) | 0.018            | 0.031              | 0.011  | 0.018  | -0.9 (-13)                   | 6.9 (100)      | 2.0   | RHL3xxx34x     |
| 10-32 UNF Female                        | 1.30 (0.051) | 1.3 (0.051) | 0.066            | 0.052              | 0.030  | 0.024  | -0.9 (-13)                   | 1.0 (15)       | 0.5   | RLL3xxx55x     |
| Line Mount, Brass (L)                   | 1.30 (0.051) | 1.3 (0.051) | 0.058            | 0.050              | 0.033  | 0.029  | -0.9 (-13)                   | 3.4 (50)       | 1.0   | RML3xxx55x     |
|                                         | 1.30 (0.051) | 1.3 (0.051) | 0.058            | 0.050              | 0.033  | 0.029  | -0.9 (-13)                   | 6.9 (100)      | 2.0   | RHL3xxx55x     |
|                                         | 2.00 (0.079) | 1.3 (0.051) | 0.097            | 0.050              | 0.056  | 0.029  | -0.9 (-13)                   | 1.7 (25)       | 2.0   | RHL3xxx85x     |
|                                         | 0.8 (0.031)  | 1.0 (0.040) | 0.026            | 0.033              | 0.010  | 0.013  | -0.9 (-13)                   | 1.0 (15)       | 0.5   | RLB3xxx34x     |
|                                         | 0.8 (0.031)  | 1.0 (0.040) | 0.018            | 0.031              | 0.011  | 0.018  | -0.9 (-13)                   | 3.4 (50)       | 1.0   | RMB3xxx34x     |
| 3.17mm (0.125in)                        | 0.8 (0.031)  | 1.0 (0.040) | 0.018            | 0.031              | 0.011  | 0.018  | -0.9 (-13)                   | 6.9 (100)      | 2.0   | RHB3xxx34x     |
| Push-in Hose                            | 1.30 (0.051) | 1.3 (0.051) | 0.079            | 0.059              | 0.031  | 0.023  | -0.9 (-13)                   | 0.7 (10)       | 0.5   | RLB3xxx55x     |
| Connecton PBT (B)                       | 1.30 (0.051) | 1.3 (0.051) | 0.058            | 0.050              | 0.033  | 0.029  | -0.9 (-13)                   | 2.4 (35)       | 1.0   | RMB3xxx55x     |
|                                         | 1.30 (0.051) | 1.3 (0.051) | 0.058            | 0.050              | 0.033  | 0.029  | -0.9 (-13)                   | 4.8 (70)       | 2.0   | RHB3xxx55x     |
|                                         | 2.00 (0.079) | 1.3 (0.051) | 0.097            | 0.050              | 0.056  | 0.029  | -0.9 (-13)                   | 1.7 (25)       | 2.0   | RHB3xxx85x     |
|                                         | 0.8 (0.031)  | 1.0 (0.040) | 0.026            | 0.033              | 0.010  | 0.013  | -0.9 (-13)                   | 1.0 (15)       | 0.5   | RLF3xxx34x     |
|                                         | 0.8 (0.031)  | 1.0 (0.040) | 0.018            | 0.031              | 0.011  | 0.018  | -0.9 (-13)                   | 3.4 (50)       | 1.0   | RMF3xxx34x     |
|                                         | 0.8 (0.031)  | 1.0 (0.040) | 0.018            | 0.031              | 0.011  | 0.018  | -0.9 (-13)                   | 6.9 (100)      | 2.0   | RHF3xxx34x     |
| Pad Mount, PBT (F)                      | 1.30 (0.051) | 1.3 (0.051) | 0.079            | 0.059              | 0.031  | 0.023  | -0.9 (-13)                   | 0.7 (10)       | 0.5   | RLF3xxx55x     |
|                                         | 1.30 (0.051) | 1.3 (0.051) | 0.058            | 0.050              | 0.033  | 0.029  | -0.9 (-13)                   | 2.4 (35)       | 1.0   | RMF3xxx55x     |
|                                         | 1.30 (0.051) | 1.3 (0.051) | 0.058            | 0.050              | 0.033  | 0.029  | -0.9 (-13)                   | 4.8 (70)       | 2.0   | RHF3xxx55x     |
|                                         | 2.00 (0.079) | 1.3 (0.051) | 0.097            | 0.050              | 0.056  | 0.029  | -0.9 (-13)                   | 1.7 (25)       | 2.0   | RHF3xxx85x     |

#### **How to Order**

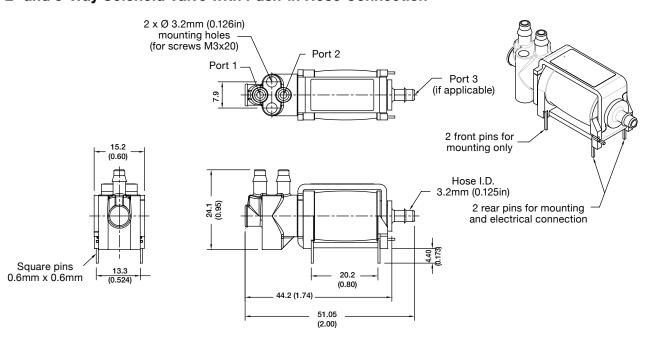


#### **Options**

- Other seal materials available on request
- Other voltages and electrical connections available
- Oxygen service
- · Other pipe connections available on request


#### Installation

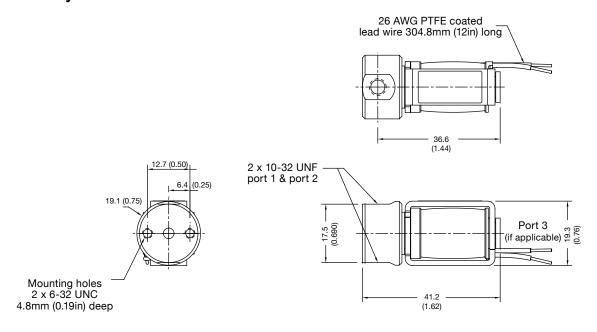
- The solenoid valves can be mounted in any position without affecting operation
- Line Mount solenoid valves have 2 mounting holes in body


**GENERAL SERVICE VALVES** 

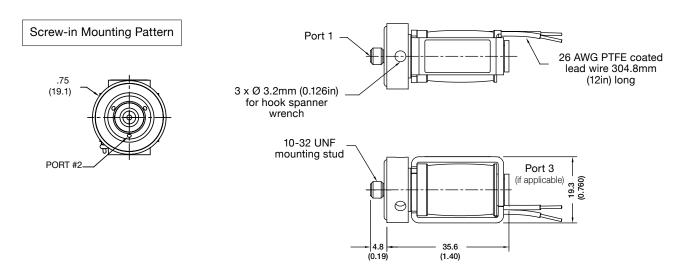
#### **Dimensions: mm (inches)**

#### 2- and 3-Way Pad Mount Solenoid Valve



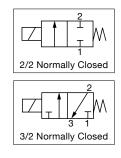

#### 2- and 3-Way Solenoid Valve with Push-in Hose Connection




**GENERAL SERVICE VALVES** 

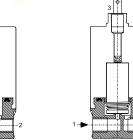
**Dimensions: mm (inches)** 

#### 2- and 3-Way Line Mount Solenoid Valve




#### 2- and 3-Way Manifold Mount Solenoid Valve

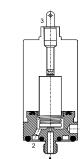



#### **GENERAL SERVICE VALVES**

- The S Series solenoid valves are designed for use with air and inert gases
- Compact light-weight architecture and low power consumption make them ideal for portable medical devices
- Larger orifice sizes and vacuum capability make these valves extremely versatile across multiple disciplines
- Available in a variety of different porting configurations for manifold and in-line mounting
- Meets all relevant CE directives, and is RoHS compliant
- Typical applications include:
  - Respiratory Therapy
  - Anesthesia Delivery
  - Dental
  - Industrial Gas Analyzers






| ), |    |  |
|----|----|--|
| ), |    |  |
|    | ), |  |



2/2 NC Line Mount

3/2 NC Line Mount





2/2 NC Manifold Mount

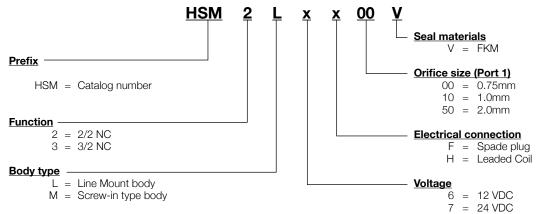
3/2 NC Manifold Mount

| Fluids*                         | Temperature Range                  | Seal Materials*                             |
|---------------------------------|------------------------------------|---------------------------------------------|
| Air or Inert Gases <sup>1</sup> | -23 °C to 66 °C (-10 °F to 150 °F) | FKM (fluoroelastomer),<br>(EPDM on request) |

<sup>1</sup> Filtered at 10µm
\* Ensure that the compatibility of the materials in contact with the fluids is verified.

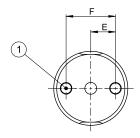
| General Valve Information |                    |  |  |  |  |
|---------------------------|--------------------|--|--|--|--|
| Body                      | Stainless steel    |  |  |  |  |
| Others                    | Stainless steel    |  |  |  |  |
| Response Time             | < 10ms             |  |  |  |  |
| Vacuum Rating             | -1 bar (-14.5 psi) |  |  |  |  |

| Electrical Characteristics |                |  |  |  |  |
|----------------------------|----------------|--|--|--|--|
| Standard Voltages          | 12 VDC, 24 VDC |  |  |  |  |
| Power Consumption          | 0.65, 2.0 W    |  |  |  |  |

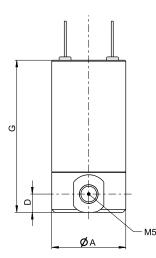

|                     | Coil       |                    |        |         | Power Ratings |             | Ambient                   |                                                              |    |       |  |                       |                   |
|---------------------|------------|--------------------|--------|---------|---------------|-------------|---------------------------|--------------------------------------------------------------|----|-------|--|-----------------------|-------------------|
| Insulation<br>Class | Insulation | Protection         | Inrush | Holding |               | ush Holding |                           | Inrush Holding Hot/<br>Cold                                  |    | Danas |  | Electrical Connection | Type <sup>1</sup> |
|                     | °C (°F)    | VA                 | VA     | VA      | W             | W           | °C (°F)                   |                                                              |    |       |  |                       |                   |
| В                   | -          | IP40<br>(EN 60529) | -      | ı       | -             | 1.5/1.5     | -23 to 66<br>(-10 to 150) | Spade plug or<br>lead wires 20 AWG, length 300mm<br>(11.8in) | 01 |       |  |                       |                   |

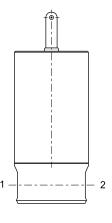
<sup>1</sup> Refer to the dimensional drawings on the following page

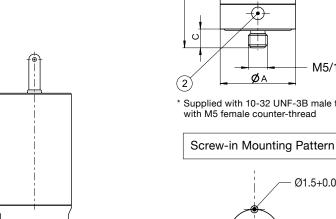
| Specifications |              |          |                        |                  |            |        |                |       |          |                 |                       |            |            |
|----------------|--------------|----------|------------------------|------------------|------------|--------|----------------|-------|----------|-----------------|-----------------------|------------|------------|
|                | Orifice      | a Size   | Flow Coe               | Flow Coefficient |            | Pressi | ıre, bar (psi) | Power |          | Catalog Number  |                       |            |            |
| Connection     | Onno         | O OIZO   | 11000 000              | moient           |            |        | max.           | Ra    | ting     | Catalog         | vuiibei               |            |            |
|                | mm (ir       | nches)   | Kv (m <sup>3</sup> /h) | Cv               | min.       | air    | air and gases  |       | v        | Line Mount Body | Screw-in Type<br>Body |            |            |
| 2/2 NC - No    | ormally Clos | ed       |                        |                  |            |        |                |       |          |                 |                       |            |            |
|                | 0.75 (       | 0.03)    | 0.025                  | 0.016            | -0.9 (-13) | -      | 7 (102)        | -     | 1.5      | HSM2Lxx00V      | HSM2Mxx00V            |            |            |
| M5             | 1 (0         | .04)     | 0.041                  | 0.027            | -0.9 (-13) | 1      | 7 (102)        | -     | 1.5      | HSM2Lxx10V      | HSM2Mxx10V            |            |            |
|                | 2 (0         | .08)     | 0.085                  | 0.057            | -0.9 (-13) | -      | 3.5 (51)       |       | 3.5 (51) |                 | 1.5                   | HSM2Lxx50V | HSM2Mxx50V |
| 3/2 NC - No    | rmally Clos  | ed       |                        |                  |            |        |                |       |          |                 |                       |            |            |
|                | Port 1       | Port 2   |                        |                  |            |        |                |       |          |                 |                       |            |            |
|                | 0.75 (0.03)  | 1 (0.04) | 0.025                  | 0.016            | -0.9 (-13) | -      | 7 (102)        | -     | 1.5      | HSM3Lxx00V      | HSM3Mxx00V            |            |            |
| M5             | 1 (0.04)     | 1 (0.04) | 0.041                  | 0.027            | -0.9 (-13) | -      | 7 (102)        | -     | 1.5      | HSM3Lxx10V      | HSM3Mxx10V            |            |            |
|                | 2 (0.08)     | 1 (0.04) | 0.085                  | 0.057            | -0.9 (-13) | -      | 3.5 (51)       | -     | 1.5      | HSM3Lxx50V      | HSM3Mxx50V            |            |            |


**GENERAL SERVICE VALVES** 

#### **How to Order**

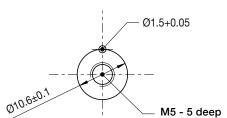




#### **Dimensions: mm (inches)**


#### HSM2Lxx00V/HSM2Lxx10V/HSM2Lxx50V HSM2Mxx00V/HSM2Mxx10V/HSM2Mxx50V



- 1) 2 mounting holes ØM3x0.5
- Mounting with hook spanner wrench DIN 1810B



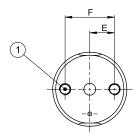




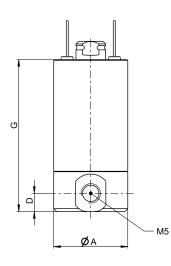

Ш

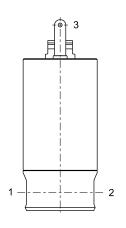
M5/10-32 UNF-3B\* (2)Supplied with 10-32 UNF-3B male thread compatible with M5 female counter-thread

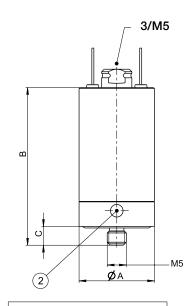



Ø10.6±0.1 max. Ø1.5+0.05

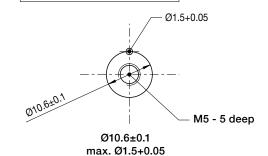
- 1) 2 mounting holes ØM3x0.5
- 2 Mounting with hook spanner wrench DIN 1810B


| Connection Type    | Catalog Number                   | Α               | В               | С             | D             | E              | F              | G               |
|--------------------|----------------------------------|-----------------|-----------------|---------------|---------------|----------------|----------------|-----------------|
| Line Mount body    | HSM2Lxx00V/HSM2Lxx10V/HSM2Lxx50V | 19.05<br>(0.75) | -               | -             | 4.7<br>(0.18) | 6.35<br>(0.25) | 12.7<br>(0.50) | 39.11<br>(1.54) |
| Screw-in type body | HSM2Mxx00V/HSM2Mxx10V/HSM2Mxx50V | 19.05<br>(0.75) | 39.62<br>(1.56) | 4.8<br>(0.19) | -             | -              | -              | -               |


### Dimensions: mm (inches)


#### HSM3Lxx00V/HSM3Lxx10V/HSM3Lxx50V HSM3Mxx00V/HSM3Mxx10V/HSM3Mxx50V




- 1 2 mounting holes ØM3x0.5
- 2 Mounting with hook spanner wrench DIN 1810B







Manifold Mounting Pattern



| Connection Type    | Catalog Number                                | Α      | В      | С      | D      | E      | F      | G      |
|--------------------|-----------------------------------------------|--------|--------|--------|--------|--------|--------|--------|
| Line Mount body    | HSM3Lxx00V/HSM3Lxx10V/HSM3Lxx50V              | 19.05  |        |        | 4.7    | 6.35   | 12.7   | 39.11  |
| Line Mount body    | TISIVISEXXUUV/TISIVISEXXTUV/TISIVISEXXSUV     | (0.75) | -      | -      | (0.18) | (0.25) | (0.50) | (1.54) |
| Screw-in type body | /pe body HSM3Mxx00V/HSM3Mxx10V/HSM3Mxx50V     |        | 39.62  | 4.8    |        |        |        |        |
| Screw-in type body | HOIVIOIVIXXUUV/HOIVIOIVIXX IUV/HOIVIOIVIXXOUV | (0.75) | (1.56) | (0.19) | _      | -      | _      | -      |

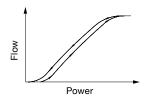
#### **Options**

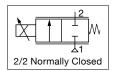
- EPDM seals available on request
- Oxygen service
- Other pipe connections available on request (10-32 UNF-3B)

#### Installation

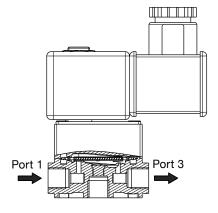
- The solenoid valves can be mounted in any position without affecting operation
- Line Mount solenoid valves have 2 mounting holes in body

#### FLAPPER PROPORTIONAL FLUID ISOLATION VALVES


- Flapper proportional valves are designed to proportionally control the flow of neutral and aggressive liquids and gases by varying the electrical input signal to the coil
- Special Flapper mechanism results in no pumping or sticking
- Reduced heat transfer between control mechanism and fluid make them ideal for use with heat-sensitive reagents and biological samples
- Hysteresis (< 20%), excellent repeatability (< 5%), and high sensitivity (< 1%) make these valves ideal for high precision flow control of liquids
- Excellent self-draining capability and easy-to-flush internal
- Valves do not require a minimum operating pressure
- Meets all relevant CE directives, and is RoHS compliant
- Typical Applications include:
  - Chromatography
  - DNA Sequencing
  - In-vitro Diagnostics
  - Industrial Liquid Analyzers


| Fluids*                       | Temperature Range                  | Seal Materials* |
|-------------------------------|------------------------------------|-----------------|
| Liquids or Gases <sup>1</sup> | 5 °C to 50 °C<br>(41 °F to 122 °F) | FKM/FFKM/EPDM   |




<sup>1</sup> Filtration: 50µm
\* Ensure that the compatibility of the materials in contact with the fluids is verified

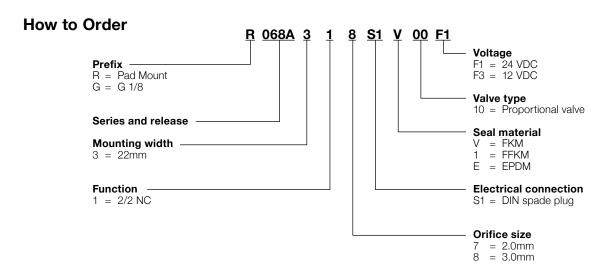
| General Valve Information |                             |  |  |  |  |  |
|---------------------------|-----------------------------|--|--|--|--|--|
| Body                      | PEEK                        |  |  |  |  |  |
| Others                    | Stainless Steel             |  |  |  |  |  |
| Response Time             | < 20ms                      |  |  |  |  |  |
| Internal Volume           | 0.48ml                      |  |  |  |  |  |
| Max. Viscosity            | 20 cSt (mm <sup>2</sup> /s) |  |  |  |  |  |



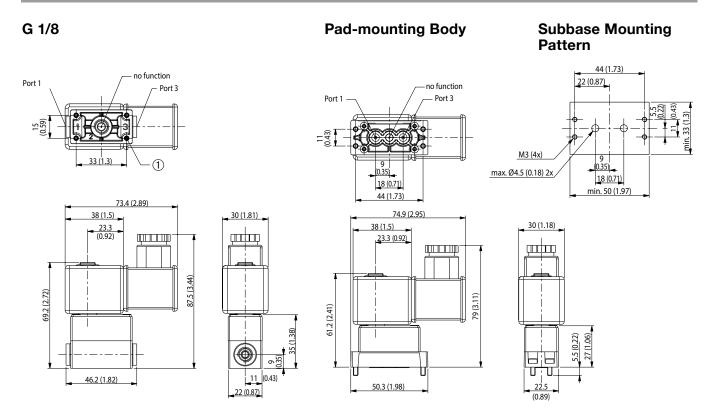







| Electrical Characteristics      |                                                                |  |  |  |  |  |
|---------------------------------|----------------------------------------------------------------|--|--|--|--|--|
| Coil Insulation Class           | F                                                              |  |  |  |  |  |
| Connector                       | Lead Wires 24 AWG; L = 500mm (19.685in)                        |  |  |  |  |  |
| Electrical Safety               | IEC 335                                                        |  |  |  |  |  |
| Electrical Enclosure Protection | IP65 (EN 60529)                                                |  |  |  |  |  |
| Standard Voltages               | 12 VDC, 24 VDC (-5%/+10%)                                      |  |  |  |  |  |
| Voltage Regulation              | 0-12 VDC, 0-24 VDC<br>Pulse-width Modulation (> 1000Hz)        |  |  |  |  |  |
| Flow Regulation Characteristics | Hysteresis typ. 20%; Repeatability typ. 5%; Sensitivity typ.1% |  |  |  |  |  |

|         | Max.                 |        | Power   | Ambient |              |                      |         |
|---------|----------------------|--------|---------|---------|--------------|----------------------|---------|
| Voltage | Operating<br>Current | Inrush | Holding |         | Hot/<br>Cold | Temperature<br>Range |         |
| V       | mA                   | VA     | VA      | W       | W            | °C (°F)              |         |
| 12      | 0                    |        |         |         | 9            |                      |         |
| 12      | 750                  |        | -       |         |              | 9                    | 5 to 50 |
| 24      | 0                    | -      |         | -       | 9            | (41 to 122)          |         |
|         | 375                  |        |         |         | 9            |                      |         |


| Specifications     | 8                       |           |                                         |      |                        |              |                 |
|--------------------|-------------------------|-----------|-----------------------------------------|------|------------------------|--------------|-----------------|
|                    | Orifice Size Flow Coeff |           | Defficient Operating Pressure, bar (psi |      |                        | Power Rating | Catalog Number  |
| Connection         | mm (inches)             | Kv (m3/h) | Cv                                      | min. | max.<br>gases, liquids | (W)          | Body<br>PEEK    |
| 01/0               | 2 (0.079)               | 0.069     | 0.080                                   | 0    | 4.5 (65)               | 9            | G068A317xxx10xx |
| G1/8               | 3 (0.118)               | 0.123     | 0.142                                   | 0    | 2.0 (29)               | 9            | G068A318xxx10xx |
| Doel May notice of | 2 (0.079)               | 0.069     | 0.080                                   | 0    | 4.5 (65)               | 9            | R068A317xxx10xx |
| Pad Mounting1      | 3 (0.118)               | 0.123     | 0.142                                   | 0    | 2.0 (29)               | 9            | R068A318xxx10xx |

<sup>1 4</sup> hexagon socket screws M3 x 8mm (0.315), stainless steel, ISO 4762 (supplied)

FLAPPER PROPORTIONAL FLUID ISOLATION VALVES



#### **Dimensions: mm (inches)**



① 4 mounting holes, max. depth 7mm (0.276in), for self-tapping screw (type EJOT PT, K30)

#### **Options**

- Digital control module Control<sup>D</sup> for DIN EN 50022 rail mounting
  - Used as a current regulator in open loop applications
  - Used with an external sensor for closed-loop applications
- Other voltages and leaded coil on request
- Subbases available on request

#### Installation

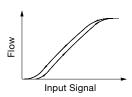
- The solenoid valves can be mounted in any position without affecting operation
- Pad-mounting solenoid valve supplied with seal
- Pipe connections 1/8 have standard thread according to ISO 228/1

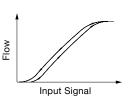
ASCO

01061GB-2019-R01

#### PROPORTIONAL VALVES, PRECIFLOW 12.7 mm

- · Preciflow solenoid valves are designed to proportionally control the flow
  - of air and inert gases by varying the electrical input signal to the coil
- Low hysteresis (typ. < 5%), excellent repeatability (typ. < 1%), and high sensitivity (typ. < 0.1%) make these valves ideal for high precision flow control
- Compact frictionless architecture saves valuable space in analytical and medical instrumentation
- Valves do not require a minimum operating pressure, and are well-suited for vacuum operation
- Power consumption as low as 1 W to meet the most stringent instrument power requirements
- Meets all relevant CE directives, and is RoHS compliant
- Typical applications include:
  - Gas Chromatography
  - Mass Flow Controllers
  - Dental Equipment
  - **Blood Pressure Monitoring**


| Fluids*                 | Temperature Range                  | Seal Materials* |
|-------------------------|------------------------------------|-----------------|
| Air, Oxygen, Inert Gas1 | 0 °C to 55 °C<br>(32 °F to 131 °F) | FKM/FFKM        |




<sup>1</sup> Filtration: 5µm

| General Valve Information |                 |  |  |  |
|---------------------------|-----------------|--|--|--|
| Body                      | Brass           |  |  |  |
| Others                    | Stainless Steel |  |  |  |

| Electrical Characteristics      |                                                                                                     |  |  |  |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|
| Coil Insulation Class           | F                                                                                                   |  |  |  |  |
| Connector                       | Lead Wires 24 AWG;<br>L = 500mm (19.7in)                                                            |  |  |  |  |
| Electrical Safety               | IEC 335                                                                                             |  |  |  |  |
| Electrical Enclosure Protection | IP50                                                                                                |  |  |  |  |
| Standard Voltages               | 6 VDC, 12 VDC, 24 VDC                                                                               |  |  |  |  |
| Input Signal                    | 0-6 VDC, 0-12 VDC, 0-24 VDC<br>Pulse-width Modulation<br>(> 1000Hz),<br>Current control recommended |  |  |  |  |
| Flow Regulation Characteristics | Hysteresis typ. 5%; Repeatability typ. 1%; Sensitivity typ. 0.1%                                    |  |  |  |  |





Max.

Operating Current

mΑ

170

420 85

210

45

110

Inrush

VA

Voltage

٧

6

12

24

2/2 Normally Closed

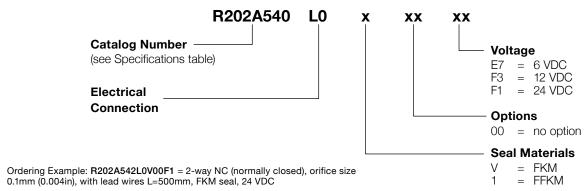


|      | ort 2   | •        |                        |
|------|---------|----------|------------------------|
| Powe | r Ratin | gs       | Ambient<br>Temperature |
| Holo | ding    | Hot/Cold | Ranges                 |
| VA   | W       | W        | °C (°F)                |
|      |         | 1        |                        |
|      |         | 2.5      |                        |

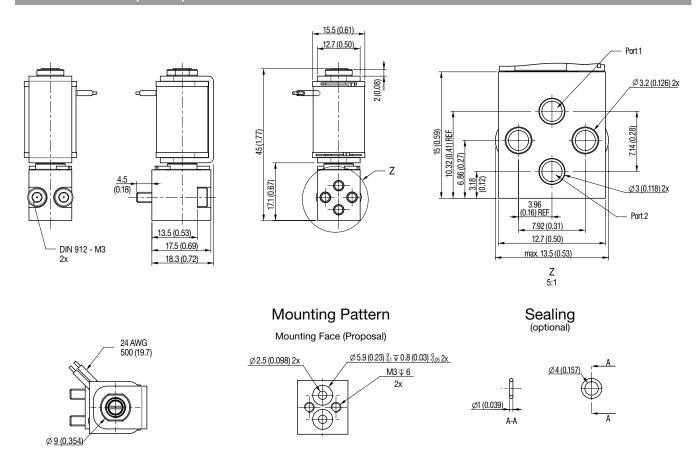
2.5

2.5

0 to 55


(32 to 131)

| pecifications  | 3                |         |                              |          |              |                   |
|----------------|------------------|---------|------------------------------|----------|--------------|-------------------|
| Orifice Size   | Flow Coefficient |         | Operating Pressure bar (psi) |          | Power Rating | Catalog Number    |
| mm (inches)    | Kv (m3/h)        | Cv      | min.                         | max.     | W            | pad mount version |
| 0.045 (0.0018) | 0.00006          | 0.00007 | -0.9 (-13)                   | 10 (145) | 1            | R202A540L0xxxxx   |
| 0.07 (0.0023)  | 0.00012          | 0.00014 | -0.9 (-13)                   | 10 (145) | 1            | R202A541L0xxxxx   |
| 0.1 (0.0040)   | 0.0003           | 0.00035 | -0.9 (-13)                   | 10 (145) | 1            | R202A542L0xxxxx   |
| 0.2 (0.0079)   | 0.0012           | 0.0014  | -0.9 (-13)                   | 10 (145) | 1            | R202A543L0xxxxx   |
| 0.4 (0.0157)   | 0.0048           | 0.0055  | -0.9 (-13)                   | 10 (145) | 2.5          | R202A544L0xxxxx   |
| 0.6 (0.0236)   | 0.0096           | 0.0111  | -0.9 (-13)                   | 10 (145) | 2.5          | R202A545L0xxxxx   |
| 0.8 (0.0315)   | 0.018            | 0.0208  | -0.9 (-13)                   | 10 (145) | 2.5          | R202A546L0xxxxx   |


<sup>\*</sup> Inlet or outlet filter available on request

PROPORTIONAL VALVES, PRECIFLOW 12.7 mm

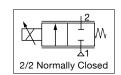
#### **How to Order**



#### **Dimensions: mm (inches)**



#### **Options**


- Digital control module Control<sup>D</sup> for DIN EN 50022 rail mounting (for more information see specifications on page 185)
- · Other materials and voltages available on request
- Sealing FKM: 514684-001, FFKM: 514684-002 (minimum order quantity required)
- Subbase with M5 connections and O-ring seals available:
  - 517973-001 --> Subbase with FKM O-rings
  - 517973-002 --> Subbase with FFKM O-Rings

#### Installation

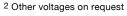
- The solenoid valves can be mounted in any position without affecting operation
- Manifold and O-Rings not included

#### PROPORTIONAL VALVES, PRECIFLOW 15 mm

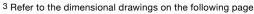
- Preciflow solenoid valves are designed to proportionally control the flow of air and inert gases by varying the electrical input signal to the coil
- Low hysteresis (typ. < 3%), excellent repeatability (typ. < 1%), and high sensitivity (typ. < 1%) make these valves ideal for high precision flow control
- Compact frictionless architecture saves valuable space in analytical and medical instrumentation
- Valves do not require a minimum operating pressure, and are well-suited for vacuum operation
- Power consumption as low as 1 W to meet the most stringent instrument power requirements
- Meets all relevant CE directives, and is RoHS compliant
- Typical applications include:
  - Respiratory Therapy
  - Gas Chromatography
  - Blood Pressure Monitoring
  - Anesthesia Delivery

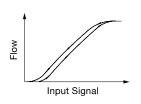


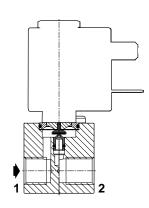



| Fluids*                     | Temperature Range               | Seal Materials* |
|-----------------------------|---------------------------------|-----------------|
| Air, Inert Gas <sup>1</sup> | 0 °C to 50 °C (32 °F to 122 °F) | FKM             |

<sup>\*</sup> Ensure that the compatibility of the materials in contact with the fluids is verified.

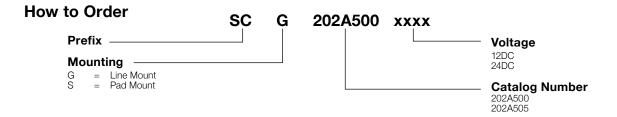

<sup>1</sup> Filtration - M5 or pad mount version:  $5\mu m$  - 1/8 :  $50\mu m$ 


| <b>General Valve Inf</b> | ormation               |
|--------------------------|------------------------|
| Body                     | Brass or PVDF          |
| Others                   | Brass, Stainless Steel |


| Electrical Characteristics      |                                                                                                                                                             |  |  |  |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Coil Insulation Class           | F                                                                                                                                                           |  |  |  |
| Connector                       | Spade plug; cable Ø4-6mm (0.157 - 0.236in), Ø6-8mm (0.236 - 0.315in), Ø6-10mm (0.236 - 0.394in)                                                             |  |  |  |
| Connector Specification         | DIN 43650, 9.4mm (0.370in), industry standard C (type 01) DIN 43650, 11mm (0.433in), industry standard B (type 02) ISO 4400/EN 175301-803, form A (type 03) |  |  |  |
| Electrical Safety               | IEC 335                                                                                                                                                     |  |  |  |
| Electrical Enclosure Protection | Molded IP65 (EN 60529)                                                                                                                                      |  |  |  |
| Standard Voltages2              | 12 VDC, 24 VDC                                                                                                                                              |  |  |  |
| Voltage Regulation              | 0-12 VDC, 0-24 VDC; Pulse-width Modulation (1000Hz)                                                                                                         |  |  |  |
| Flow Regulation Characteristics | Hysteresis typ. < 3%; Repeatability typ. < 1%; Sensitivity typ. < 1%                                                                                        |  |  |  |



| Max.    |                      |        | Power   | Ratings | Ambient      |                       |                   |
|---------|----------------------|--------|---------|---------|--------------|-----------------------|-------------------|
| Voltage | Operating<br>Current | Inrush | Holding |         | Hot/<br>Cold | Temperature<br>Ranges | Type <sup>3</sup> |
| V       | mA                   | VA     | VA      | VA W    |              | °C (°F)               |                   |
|         | 85                   |        |         |         | 1            |                       | 01                |
| 12      | 340                  |        | -       |         | 4            | 0 to 50               | 02                |
| 12      | 400                  | -      |         |         | 5            | (32 to 122)           |                   |
|         |                      |        |         |         |              |                       | 03                |
|         | 40                   |        |         |         | 1            |                       | 01                |
| 24      | 170                  |        |         |         | 4            | 0 to 50               | 01                |
| 24      | 230                  | _      |         |         | 5            | (32 to 122)           | 02                |
|         | 380                  |        |         |         | 9            |                       | 03                |








PROPORTIONAL VALVES, PRECIFLOW 15 mm

| Specifications |              |           |                  |                    |                  |                        |                |            |                                            |
|----------------|--------------|-----------|------------------|--------------------|------------------|------------------------|----------------|------------|--------------------------------------------|
|                |              |           |                  | Operating Pressure |                  |                        | Catalog Number |            |                                            |
| Connection     | Orifice Size | Flow Co   | Flow Coefficient |                    | ar (psi)<br>max. | Power<br>Rating        | Thread         | ed Body    | ISO 15218<br>(CNOMO, size 15)<br>Interface |
|                | mm (inches)  | Kv (m3/h) | Cv               |                    | air, inert gas   | W                      | brass          | PVDF       | brass                                      |
|                | 0.1 (0.0040) | 0.0003    | 0.00035          |                    | 10 (145)         | 1                      | SCG202A500     | -          | SCS202A505                                 |
| M5 or          | 0.2 (0.0079) | 0.0012    | 0.0014           |                    |                  | 1                      | -              | SCG202A501 | SCS202A506                                 |
| Pad            | 0.4 (0.0157) | 0.0048    | 0.0055           | -0.9<br>(-13)      |                  | 4                      | -              | SCG202A502 | SCS202A507                                 |
| Mount          | 0.6 (0.0236) | 0.0096    | 0.0111           | 1 (10)             |                  | 4                      | -              | SCG202A503 | SCS202A508                                 |
|                | 0.8 (0.0315) | 0.018     | 0.021            |                    |                  | 4                      | -              | SCG202A504 | SCS202A509                                 |
|                | 0.8 (0.0315) | 0.018     | 0.021            |                    | 10 (11=)         | 5                      | SCG202A510     | -          | -                                          |
|                | 1.2 (0.0472) | 0.041     | 0.047            | -0.9               | 10 (145)         | 5                      | SCG202A511     | -          | -                                          |
| G1/8           | 1.6 (0.0630) | 0.071     | 0.082            | (-13)              | 8 (116)          | 5                      | SCG202A512     | -          | -                                          |
|                | 2.0 (0.0787) | 0.096     | 0.111            |                    | 6 (87)           | 5W (12V) /<br>9W (24V) | SCG202A513     | -          | -                                          |



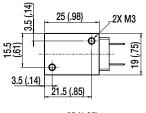
#### **Options**

- Digital control module Control<sup>D</sup> for DIN EN 50022 rail mounting (for more information see specifications on page 185)
- Electronic control units for proportional control
- Other materials, connections, and coils available on request
- Plug with visual indication and peak voltage suppression or with cable length of 2m (78.7in)

#### Installation

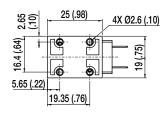
- The valves can be mounted in any position without affecting operation
- Pipe connection identifier is: G = G (ISO 228/1)

PROPORTIONAL VALVES, PRECIFLOW 15 mm


#### **Dimensions: mm (inches)**

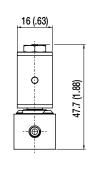
Type 01

Prefix "SC" solenoid, epoxy molded IEC 335/DIN 43650, 9.4mm (0.37in) **IP65** 



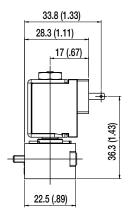


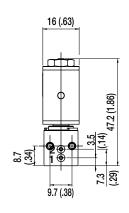
#### SCG202A500





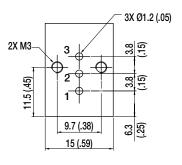

#### SCG202A501/A502/A503/A504






# SCS202A505/A506/A507/A508/A509


(Version with ISO 15218 interface for installation on single subbase M5)





2X M5

#### ISO 15218 Mounting Pattern



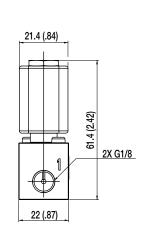
PROPORTIONAL VALVES, PRECIFLOW 15 mm

#### **Dimensions: mm (inches)**

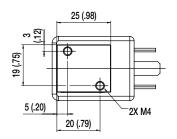
Type 02-03

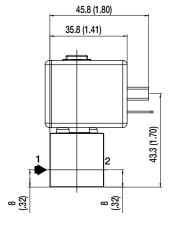
Prefix "SC" solenoid, epoxy molded IEC 335/DIN 43650 or ISO 4400 **IP65** 

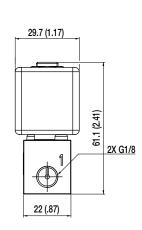





Type 02: SCG202A510/A511/A512 Type 03: SCG202A513

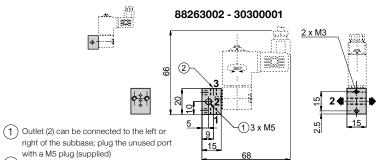

With 22 mm Coil Version


25 (.98) 19 (.75) 5 (.20) 2X M4 20 (.79)


37.2 (1.46) 30.9 (1.22) 50 (1.97) 8 (2)



Type 03: SCG202A513\_24V With 30 mm Coil Version

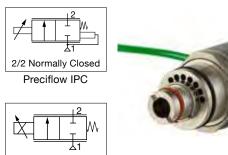


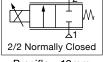





#### Single Subbase M5

Aluminum or brass





- with a M5 plug (supplied)
- Port (3) unused



#### PROPORTIONAL VALVES, PRECIFLOW IPC, PRECIFLOW 19mm

- Preciflow solenoid valves are designed to proportionally control the flow of air and inert gases by varying the electrical input signal to the coil
- Low hysteresis (typ. < 5%), excellent repeatability (typ. < 1%), and high sensitivity (typ. < 1%) make these valves ideal for high precision flow control
- Compact frictionless architecture saves valuable space in analytical and medical instrumentation
- Valves do not require a minimum operating pressure
- Low power consumption to meet the most stringent instrument power requirements
- Meets all relevant CE directives, and is RoHS compliant
- Typical applications include:
  - Respiratory Therapy
  - Gas Chromatography
  - Blood Pressure Monitoring
  - Anesthesia Delivery





Preciflow 19mm

| Version         | Fluids*                  | Temperature Range                   | Seal Materials*                                      |
|-----------------|--------------------------|-------------------------------------|------------------------------------------------------|
| Preciflow IPC   | Air or                   | 10 °C to 50 °C<br>(50 °F to 122 °F) | Preciflow IPC: FKM, NBR                              |
| Preciflow 19 mm | Inert Gases <sup>1</sup> | 0 °C to 50 °C<br>(32 °F to 122 °F   | <b>Preciflow 19mm:</b> FKM (EDPM or FFKM on request) |

<sup>\*</sup> Ensure that the compatibility of the materials in contact with the fluids is verified.

| Flow |              |
|------|--------------|
|      | Input Signal |

| General Valve Information |                                                                           |  |  |  |  |
|---------------------------|---------------------------------------------------------------------------|--|--|--|--|
|                           | Preciflow IPC Preciflow 19mm                                              |  |  |  |  |
| Body                      | Stainless Steel and Brass (Line Mount) Stainless Steel or POM (Pad Mount) |  |  |  |  |
| Others                    | Stainless Steel, FKM, PPS POM, Brass, Stainless Steel, PPS                |  |  |  |  |
| Max. Viscosity            | 50 cSt (mm <sup>2</sup> /s)                                               |  |  |  |  |

| Electrical Characteristics      |                                                                                                |  |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------|--|--|--|
| Coil Insulation Class           | F                                                                                              |  |  |  |
| Connector                       | Lead Wires (PTFE/ ETFE); 0.23m (9in) length (24 AWG)                                           |  |  |  |
| Electrical Safety               | IEC 335                                                                                        |  |  |  |
| Electrical Enclosure Protection | IP50 (EN 60529)                                                                                |  |  |  |
| Standard Voltages2              | 6 VDC, 12 VDC, 24 VDC                                                                          |  |  |  |
| Input signal                    | 0-6 VDC, 0-12 VDC, 0-24 VDC; Pulse-width Modulation (min. 2000Hz), Current control recommended |  |  |  |
| Flow Regulation Characteristics | Hysteresis < 5%; Repeatability < 1%; Sensitivity < 1%                                          |  |  |  |
| Flow Regulation Characteristics |                                                                                                |  |  |  |

| Electrical Characteristics      |                                                                                                   |  |  |  |  |
|---------------------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|
| Coil Insulation Class           | F                                                                                                 |  |  |  |  |
| Connector                       | Lead Wires (PTFE/ ETFE); 0.23m (9in) length (24 AWG)                                              |  |  |  |  |
| Electrical Safety               | IEC 335                                                                                           |  |  |  |  |
| Electrical Enclosure Protection | IP50 (EN 60529)                                                                                   |  |  |  |  |
| Standard Voltages2              | 6 VDC, 12 VDC, 24 VDC                                                                             |  |  |  |  |
| Input signal                    | 0-6 VDC, 0-12 VDC, 0-24 VDC; Pulse-width Modulation (min. 2000Hz),<br>Current control recommended |  |  |  |  |
| Flow Regulation Characteristics | Hysteresis < 5%; Repeatability < 1%; Sensitivity < 1%                                             |  |  |  |  |
| 2 Other voltages on request     |                                                                                                   |  |  |  |  |

| 2         | 2         |
|-----------|-----------|
| Preciflow | Preciflow |
| IPC       | 19mm      |

| iflow | Precifl |
|-------|---------|
| С     | 19mr    |
|       |         |

| V-II           | Max. Operating | Power Ratings |         |     |          | Ambient                 |                   |  |
|----------------|----------------|---------------|---------|-----|----------|-------------------------|-------------------|--|
| Voltage        | Current        | Inrush        | Holding |     | Hot/Cold | Temperature Ranges      | Type <sup>3</sup> |  |
| V              | mA             | VA            | VA W    |     | W        | °C (°F)                 |                   |  |
| Preciflow IPC  |                |               |         |     |          |                         |                   |  |
| 6              | 420            |               |         |     | - 2.5    | 10 1- 50                | 01                |  |
| 12             | 210            | -             | -       | -   |          | 10 to 50<br>(50 to 122) |                   |  |
| 24             | 110            |               |         |     |          | (00 to 122)             |                   |  |
| Preciflow 19mm |                |               |         |     |          |                         |                   |  |
| 6              | max. 90        |               |         |     | 0.5      |                         |                   |  |
| U              | max. 420       | 2.5           | 2.5     |     |          |                         |                   |  |
| 10             | max. 45        |               |         | 0.5 | 0 to 50  | 01                      |                   |  |
| 12             | max. 210       | -             | -       | -   | 2.5      | (32 to 122)             | UI                |  |
| 24             | max. 25        |               |         |     | 0.5      | (02 13 122)             |                   |  |
| 24             | max. 110       |               |         |     | 2.5      |                         |                   |  |

<sup>3</sup> Refer to the dimensional drawings on the following pages

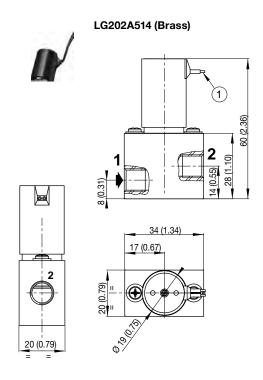
<sup>&</sup>lt;sup>1</sup> Filtration: 5µm

# ASCO<sup>TM</sup> MINIATURE SOLENOID VALVES PROPORTIONAL VALVES, PRECIFLOW IPC, PRECIFLOW 19mm

| Specifications                             |              |                        |         |                              |                |        |                |
|--------------------------------------------|--------------|------------------------|---------|------------------------------|----------------|--------|----------------|
|                                            | Orifice Size | Flow Coefficient       |         | Operating Pressure bar (psi) |                | Power  |                |
| Connection                                 |              |                        |         | min.                         | max.           | Rating | Catalog Number |
|                                            | mm (inches)  | Kv (m <sup>3</sup> /h) | Cv      |                              | air, inert gas | w      |                |
| Preciflow IPC*                             |              |                        |         |                              |                |        |                |
| G1/8                                       | 3 (0.12)     | 0.17                   | 0.20    |                              | 7 (102)        | 2.5    | LG202A514      |
| Cartridge                                  | 3 (0.12)     | 0.17                   | 0.20    | 0                            |                |        | LS202A515      |
| Pad Mounting                               | 3 (0.12)     | 0.17                   | 0.20    |                              |                |        | LS202A516      |
| * Backpressure: max. 10% of inlet pressure |              |                        |         |                              |                |        |                |
| Preciflow 19mr                             | n            |                        |         |                              |                |        |                |
|                                            | 0.1 (0.004)  | 0.0003                 | 0.00035 | -0.9<br>(-13)                | 10 (145)       | 0.5    | LS202A517      |
|                                            | 0.2 (0.008)  | 0.0012                 | 0.0014  |                              |                |        | LS202A518      |
| Cartridge                                  | 0.5 (0.020)  | 0.0072                 | 0.0083  |                              |                | 2.5    | LS202A519      |
| Carinage                                   | 0.8 (0.031)  | 0.015                  | 0.017   |                              |                |        | LS202A520      |
|                                            | 1.2 (0.047)  | 0.021                  | 0.024   |                              |                |        | LS202A521      |
|                                            | 1.6 (0.063)  | 0.028                  | 0.032   |                              |                |        | LS202A522      |

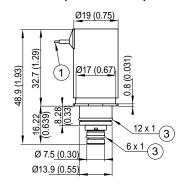
### **How to Order**

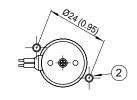
|                                         | LG202A514 | XXXX                    |
|-----------------------------------------|-----------|-------------------------|
| Catalog Number See specifications table |           | Voltage  06DC 12DC 24DC |

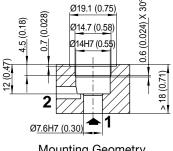

PROPORTIONAL VALVES, PRECIFLOW IPC, PRECIFLOW 19mm

# **Dimensions: mm (inches)**

# **Preciflow IPC**

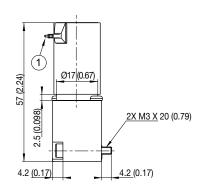

Type 01


Prefix "L" Leaded Coil IP50

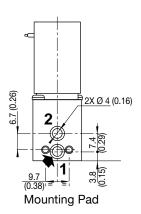



- 1 2 electrical supply wires, length: 0.23m (9in)
- Mounting: 2 screws M3 x 6mm (0.24in) + washers
- $\overline{3}$  O-ring

# LS202A515 (Stainless Steel)





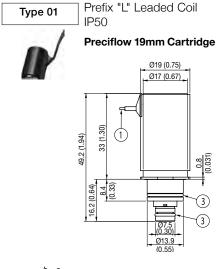

Mounting Geometry (Proposal)

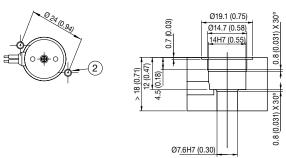
# LS202A516 (POM)








| Time | Catalan Number | Weight 1 |
|------|----------------|----------|
| Туре | Catalog Number | kg       |
|      | LG202A514      | 0.183    |
| 01   | LS202A515      | 0.063    |
|      | LS202A516      | 0.073    |


<sup>1</sup> Including leads, length 0.23m (9in)

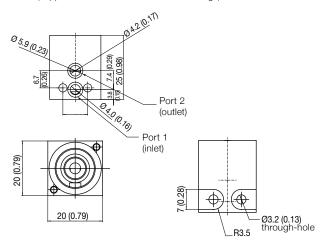
PROPORTIONAL VALVES, PRECIFLOW IPC, PRECIFLOW 19mm

# **Dimensions: mm (inches)**

# **Preciflow 19mm**

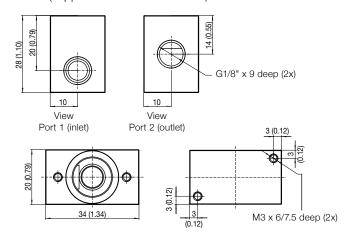





- 1 2 electrical supply wires, length: 0.23m (9in)
- (2) Mounting: 2 screws M3 x 6mm (0.24in) + washers
- 3 O-ring

| Cotalea Number                | Weight  |
|-------------------------------|---------|
| Catalog Number                | kg      |
| LS202A517/518/519/520/521/522 | 0.063 1 |
| 528190-001                    | 0.012kg |
| 526624-001                    | 0.013kg |

<sup>&</sup>lt;sup>1</sup> Including leads, length 0.23m (9in)


# Pad Mount Subbase 526624-001

POM (supplied with 2 screws M3x20 and O-rings)



# Inline Subbase 528190-001

Brass (supplied with 2 screws M3x6)



# **Options**

- Digital control module Control<sup>D</sup> for DIN EN 50022 rail mounting
  - (for more information see specifications on page 185)
- Other pipe connections are available on request
- Other seal materials are available on request
- Version for higher backpressure on request (only Preciflow IPC)

# Installation

- The solenoid valves can be mounted in any position without affecting operation
- Pipe connection identifier is G = G (ISO 228/1)

# AVENTICS™ PROPORTIONAL VALVE SENTRONIC PLUS IPC

DIGITAL ELECTRONIC PRESSURE REGULATOR, IO-LINK CLASS A

- SENTRONIC PLUS IPC is a highly dynamic 2/2-way proportional valve with digital control.
- IO Link CLASS A Version
- RoHS, REACH compliant
- The very low friction mechanic delivers precise control behaviour, especially in flowing conditions.

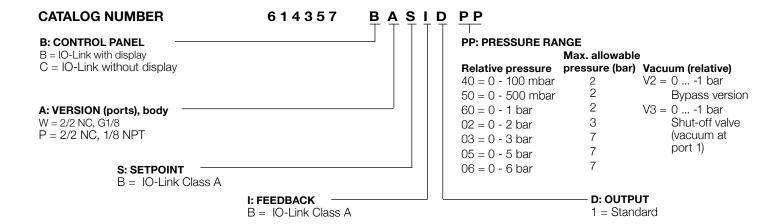
| General Valve Information        |                                                                       |  |  |  |
|----------------------------------|-----------------------------------------------------------------------|--|--|--|
| Fluids                           | Air or neutral gases,<br>Class 5 according to ISO 8573-1:2010 [7:4:4] |  |  |  |
| Ports                            | G 1/8, 1/8 NPT                                                        |  |  |  |
| Max. allowable pressure          | Varies by outlet pressure range.<br>See How to Order on next page.    |  |  |  |
| Pressure range                   | See table below                                                       |  |  |  |
| Fluid temperature                | 050 C° (32122°F)                                                      |  |  |  |
| Ambient temperature              | 050 C° (32122°F)                                                      |  |  |  |
| Setpoint                         | Digital setpoint in steps of 1 mbar<br>0-10000 = 0-10 bar             |  |  |  |
| Hysteresis                       | 0.5 % of span                                                         |  |  |  |
| Linearity / pressure measurement | ± 0.5 % of span                                                       |  |  |  |
| Repeatability                    | ± 0,5 % of span                                                       |  |  |  |



| Construction   |                               |  |  |
|----------------|-------------------------------|--|--|
| Body           | Aluminium                     |  |  |
| Internal parts | Stainless steel and aluminium |  |  |
| Seals          | FPM                           |  |  |

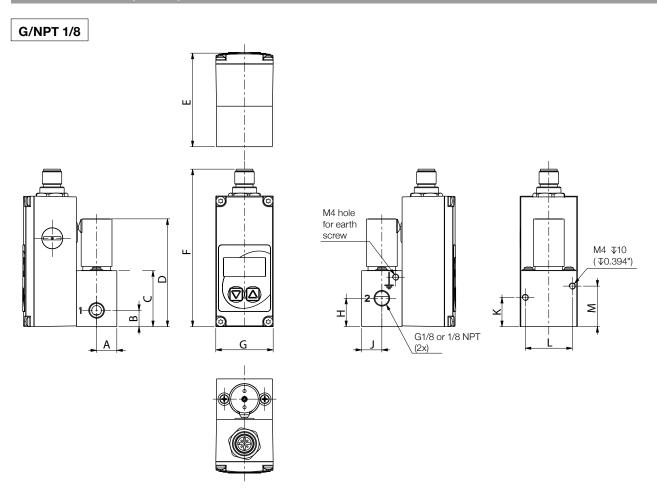
| IO-Link                             |                       |  |  |  |
|-------------------------------------|-----------------------|--|--|--|
| Protocol version Specification V1.1 |                       |  |  |  |
| Baud rate                           | COM3 (230.4 kBaud)    |  |  |  |
| Minimum cycle time                  | 0.5 ms                |  |  |  |
| Process data                        | 2 Byte IN, 2 Byte OUT |  |  |  |
| Port type                           | Class A               |  |  |  |

| Electrical Characteristics |                 |                      |                         |                  |                      |                                                         |  |  |
|----------------------------|-----------------|----------------------|-------------------------|------------------|----------------------|---------------------------------------------------------|--|--|
| Nominal<br>diameter<br>DN  | Voltage *       | Max.<br>power<br>(W) | Max.<br>current<br>(mA) | Insulation class | Degree of protection | Electrical connection                                   |  |  |
| 3                          | 24VDC<br>+/-10% | 5                    | 210                     | F                | IP30                 | 5-pin M12<br>connector<br>(to be ordered<br>separately) |  |  |


<sup>\*</sup> Max. ripple: 10 %

| Specifications |              |                           |           |         |  |
|----------------|--------------|---------------------------|-----------|---------|--|
|                | Orifice size |                           | Flow at   | 6 bar   |  |
| Pipe size      |              | Flow Co                   | efficient |         |  |
|                | (mm)         | Kv<br>(m <sup>3</sup> /h) | Cv        | (l/min) |  |
| G/NPT 1/8      | 3            | 0.17                      | 0.20      | 150     |  |

# **AVENTICS™ PROPORTIONAL VALVE SENTRONIC**PLUS IPC

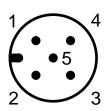

DIGITAL ELECTRONIC PRESSURE REGULATOR, IO-LINK CLASS A

# **How to Order**



# AVENTICS™ PROPORTIONAL VALVE SENTRONIC PLUS IPC DIGITAL ELECTRONIC PRESSURE REGULATOR, IO-LINK CLASS A

# **Dimensions: mm (inches)**

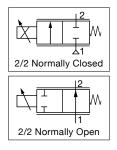



| Catalog Number | A       | В       | С       | D       | E      | F       | G       | Н       | J       | K       | L       | M       | Weight<br>kg (lbs) |
|----------------|---------|---------|---------|---------|--------|---------|---------|---------|---------|---------|---------|---------|--------------------|
| 614357XXXXXXX  | 12.5    | 10      | 34.5    | 66.5    | 57.7   | 97      | 35.4    | 17.5    | 12.5    | 18      | 29      | 25      | 0.250              |
|                | (0.492) | (0.393) | (1.358) | (2.618) | (2.27) | (3.819) | (1.393) | (0.689) | (0.492) | (0.708) | (1.142) | (0.984) | (0.551)            |

# **AVENTICS™ PROPORTIONAL VALVE SENTRONIC***PLUS* **IPC**

DIGITAL ELECTRONIC PRESSURE REGULATOR, IO-LINK CLASS A

# **Pin Assignment / Cable Assignment**




| Pin  | Description        |  |
|------|--------------------|--|
| 1    | 24V voltage supply |  |
| 2    | not connected      |  |
| 3    | Supply ground      |  |
| 4    | C/Q                |  |
| 5    | not connected      |  |
| Body | EMC shield         |  |

| ACCESSORIES                                                 |                 |  |  |  |
|-------------------------------------------------------------|-----------------|--|--|--|
| Description                                                 | Catalog Number  |  |  |  |
| Connection cable 5m, straight socket, open cable end        | N15183710000000 |  |  |  |
| Connection cable 10m,straight socket, open cable end        | N15183840000000 |  |  |  |
| Connection cable 5m, straight socket on straight connector  | N15184490000000 |  |  |  |
| Connection cable 10m, straight socket on straight connector | N15184520000000 |  |  |  |

# PROPORTIONAL VALVES, MINIATURE PIEZOTRONIC

- Miniature, ultra-low power consumption (0.004 W), almost no heat dissipation
- Pad mounting proportional mini piezo-valves available with single subbase M5
- · Variable flow, proportional to the control signal
- No wearing parts: practically unlimited service life
- No inductive peaks when switching: no circuit protection necessary
- Valves do not require a minimum operating pressure
- The solenoid valves satisfy all relevant EC directives
- Typical applications include:
  - Gas Chromatography
  - Mass Flow Controllers
  - Dental Equipment
  - Blood Pressure Monitoring





| Fluids*                         | Temperature Range               | Seal Materials* |  |  |
|---------------------------------|---------------------------------|-----------------|--|--|
| Air or Inert Gases <sup>1</sup> | 0 °C to 60 °C (32 °F to 140 °F) | NBR             |  |  |

# Ensure that the compatibility of the materials in contact with the fluids is verified.

1 Filtration: 5µm, unlubricated, condensate free, dew point -10 °C

| General Valve Information |                                 |  |  |  |  |
|---------------------------|---------------------------------|--|--|--|--|
| Body                      | PPS                             |  |  |  |  |
| Others                    | Piezo Ceramics, Brass, Aluminum |  |  |  |  |

# ELECTRICAL CONNECTION (Polarized piezo valve)

Version with spade plug connection:

2: GND (-) without function 1: 0-40 VDC (+)

Version with 2 leads: red wire: + black wire: -

| Electrical Characteristics      |                                                                             |  |  |  |  |
|---------------------------------|-----------------------------------------------------------------------------|--|--|--|--|
| Coil Insulation Class           | F                                                                           |  |  |  |  |
| Connector                       | Spade plug or cable 6-7mm (0.24-0.28in)                                     |  |  |  |  |
| Connector Specification         | DIN 43650, 9.4mm, form C or 2<br>leads outlet 28 AWG, length 1m<br>(39.4in) |  |  |  |  |
| Electrical Safety               | IEC 335                                                                     |  |  |  |  |
| Electrical Enclosure Protection | Molded IP65 (EN 60529)                                                      |  |  |  |  |
| Voltage Regulation              | 0 – 40 VDC                                                                  |  |  |  |  |
| Flow Regulation Characteristics | Hysteresis < 10% to 15%                                                     |  |  |  |  |

| Holding |        | Powe           | r Ratii | ngs      | Ambient Temperature    |                   |  |  |
|---------|--------|----------------|---------|----------|------------------------|-------------------|--|--|
| Current | Inrush | Inrush Holding |         | Hot/Cold | Ranges                 | Type <sup>2</sup> |  |  |
| mA      | VA     | VA             | W       | W        | °C (°F)                |                   |  |  |
| < 100   | -      | -              | -       | 0.004    | 0 to 60<br>(32 to 140) | 01-02             |  |  |

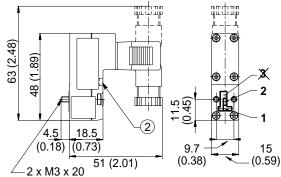
 $<sup>^{\</sup>rm 2}$  Refer to the dimensional drawings on the following page

| Specifications |                        |           |                                    |    |          |   |              |                         |          |                              |          |
|----------------|------------------------|-----------|------------------------------------|----|----------|---|--------------|-------------------------|----------|------------------------------|----------|
| Connection     | Flow Co                | efficient | Operating<br>Pressure<br>bar (psi) |    | Pressure |   | lding<br>wer | Catalog Number          |          |                              |          |
|                |                        |           | min.                               | ma | ax.      |   |              | without manual operator |          | with impulse manual operator |          |
|                | Kv (m3/h)              | Cv        | 111111.                            | а  | ir       | W |              | connector               | leads    | connector                    | leads    |
| 2/2 NC - Norm  | nally Closed           | d         |                                    |    |          |   |              |                         |          |                              |          |
| Pad Mounting   | 0.005                  | 0.006     | 0                                  | -  | 8        | - | 0.004        | 63000075                | 63000035 | 63000079                     | 63000039 |
| Pad Modrilling | 0.007                  | 0.008     | 0                                  | -  | 4        | - | 0.004        | 63000076                | 63000036 | 63000080                     | 63000040 |
| 2/2 NO - Norm  | 2/2 NO - Normally Open |           |                                    |    |          |   |              |                         |          |                              |          |
| Dod Mounting   | 0.005                  | 0.006     | 0                                  | -  | 8        | - | 0.004        | 63000077                | 63000037 | 63000081                     | 63000041 |
| Pad Mounting   | 0.007                  | 0.008     | 0                                  | -  | 4        | - | 0.004        | 63000078                | 63000038 | 63000082                     | 63000042 |

| Subbases3  |                     |                       |          |          |
|------------|---------------------|-----------------------|----------|----------|
| Connection | Mounting Type       | Description           | Catalog  | Number   |
| Connection | Mounting Type       | Description           | aluminum | brass    |
| M5         | individual mounting | M5 lateral connection | 88263002 | 30300001 |

<sup>3</sup> Multiple subbases available upon request

PROPORTIONAL VALVES, MINIATURE PIEZOTRONIC


# **Dimensions: mm (inches)**



IEC 335/DIN 43650



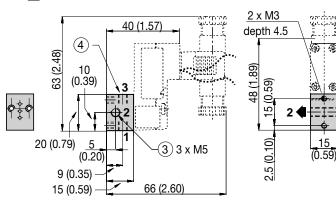

### 63000075/76/77/78/79/80/81/82



IEC 335 Type 02 IP65

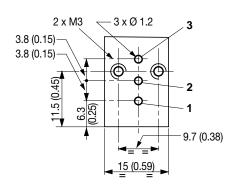


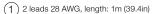
63000035/36/37/38/39/40/41/42






# Single Subbase M5


Aluminum or brass


88263002 - 30300001





# Subbase Mounting Pattern ISO 15218/CNOMO E06.36.120N, size 15





(2) Manual operator location

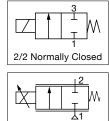
(3) Outlet (2) can be connected on the left or on the right of subbase; close he unused prort with a Ø M5 plug (supplied)

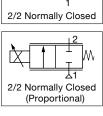
(4) Port (3) not used (to be provided with protection)

| Time | Catalan Niverkan              | Weight |
|------|-------------------------------|--------|
| Туре | Catalog Number                | kg     |
| 01   | 63000075/76/77/78/79/80/81/82 | 0.040  |
| 02   | 63000035/36/37/38/39/40/41/42 | 0.032  |
| -    | 88263002                      | 0.012  |
| -    | 30300001                      | 0.034  |

# **Options**

• Plug with cable length of 2m (78.8in)


# Installation


- The solenoid valves can be mounted in any position without affecting operation
- Mounting on single subbases
- Unlike the on/off type, the proportional version is not equipped with electronics. Please check for correct polarity when connecting the valve. The piezo element will be damaged if the polarity of the connections is inversed. The control system of the user must be used for charging and discharging.

Important Note: The peak current must be limited by series resistor greater than 30 ohms

# **DENTAL MANIFOLD**

- 3 manifolds with the following configurations:
  - Manifold with 2 microactuators 2/2NC (A-P) and 1 total isolation microactuator 2/2NC (W); all direct acting.
  - Manifold with 1 microactuator 2/2NC (A), 1 total isolation microactuator 2/2NC (W) and 1 proportional solenoid valve 2 ways NC (P); all direct acting.
  - Manifold with 1 total isolation direct acting microactuator 2/2NC (W), 1 water channel (P) and 1 air channel (A).
- Compact and versatile version, designed for dental equipments; equipped with 3 flow regulators. The modular system allows the use as single or as a set (max. 4 manifolds); the manifold is delivered with 3 sealing O-rings and joint pin. Heads group kit (feeding and end side) available separately (see details on the back).
- Suitable to shut off liquid (W) and gaseous (A-P) fluids (verify the compatibility of fluid with materials in contact). Pipette Dispensing







**Series 252 D01** 

| Fluids*          | Temperature Range              | Seal Materials* |
|------------------|--------------------------------|-----------------|
| Liquids or Gases | -10°C to 90 °C (50°F to 194°F) | EPDM            |

\* Ensure that the compatibility of the materials in contact with the fluids is verified..

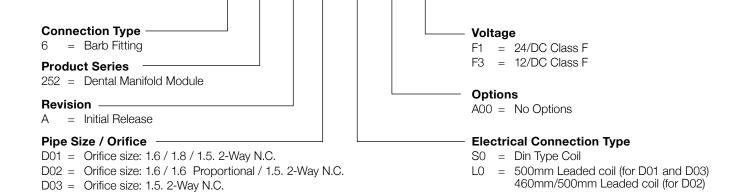
| General Valve Information |                                 |  |  |  |
|---------------------------|---------------------------------|--|--|--|
| Body                      | POM                             |  |  |  |
| Others                    | Stainless Steel / PA 66 / Brass |  |  |  |
| Response Time             | < 10ms                          |  |  |  |
| Max. Viscosity            | 22 cSt (mm <sup>2</sup> /s)     |  |  |  |

| Electrical Characteristics         |                                                                         |  |  |  |  |
|------------------------------------|-------------------------------------------------------------------------|--|--|--|--|
| Coil Insulation Class              | F                                                                       |  |  |  |  |
| Connector                          | - DIN 46340 with micro plug connector<br>- Lead Wires                   |  |  |  |  |
| Electrical Safety                  | EN 60730-1                                                              |  |  |  |  |
| Electrical Enclosure<br>Protection | IP65 (EN 60529), IP40 (EN 60529)                                        |  |  |  |  |
| Standard Voltages*                 | 12 VDC, 24 VDC (-5%/+10%),<br>Proportional valve (P): 70 – 220 mA (24V) |  |  |  |  |

<sup>\*</sup> Other voltages on request

| Coil Type          | Power<br>Ratings | Ambient<br>Temperature<br>Range | Protection | Electrical Connection                                                  |
|--------------------|------------------|---------------------------------|------------|------------------------------------------------------------------------|
|                    | W                | °C (°F)                         | VA         | W                                                                      |
| Standard S0        | 4                | 10 to 60<br>(50 to 140)         | IP65       | Spade terminals 2.8 x 0.5 (DIN 46340)                                  |
| Standard L0        | 4                | 10 to 60<br>(50 to 140)         | IP65       | 500mm Lead Wire (for D01 and D03)<br>- 460mm/500mm Lead Wire (for D02) |
| Proportional<br>S0 | 5.5              | 10 to 60<br>(50 to 140)         | IP65       | Spade terminals 2.8 x 0.5 (DIN 46340)                                  |
| Proportional<br>L0 | 5.5              | 10 to 60<br>(50 to 140)         | IP65       | 500mm Lead Wire (for D01 and D03)<br>- 460mm/500mm Lead Wire (for D02) |




**Series 252 D02** 



Series 252 D03

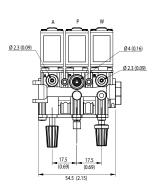
**DENTAL MANIFOLD** 

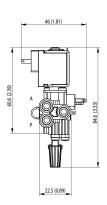
| pecification | ecifications |                        |             |   |                               |          |                  |                |
|--------------|--------------|------------------------|-------------|---|-------------------------------|----------|------------------|----------------|
|              | Orifice      |                        | Flow        |   | Operating Pressure. bar (psi) |          |                  |                |
| Туре         | Size         |                        | Coefficient |   |                               |          | Power Rating (W) | Catalog Number |
|              | mm (inches)  | Kv (m <sup>3</sup> /h) | Cv          |   | gases                         | liquids  |                  |                |
|              | 1.6 (0.063)  |                        |             |   | 6 (87)                        | -        | 4                |                |
| D01          | 1.8 (0.071)  | 0.030                  | 0.035       | 0 | 6 (87)                        | -        | 4                | 6252AD01       |
|              | 1.5 (0.059)  |                        |             |   | -                             | 3 (43.5) | 4                |                |
|              | 1.6 (0.063)  | 0.030                  | 0.035       |   | 6 (87)                        | -        | 4                |                |
| D02          | 1.6 (0.063)  | -                      | -           | 0 | 6 (87)                        | -        | 5.5              | 6252AD02       |
|              | 1.6 (0.063)  | 0.030                  | 0.035       |   | -                             | 3 (43.5) | 4                |                |
| D03          | 1.5 (0.059)  | 0.030                  | 0.035       | 0 | -                             | 3 (43.5) | 4                | 6252AD03       |



6 252 A D01 S0 A00 F1

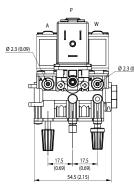
# Accessories Heads group kit

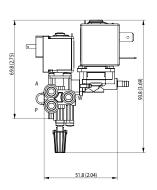

**How to Order** 

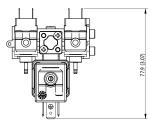

| Description                                                                        | Series | Catalog Number  |
|------------------------------------------------------------------------------------|--------|-----------------|
| Heads group kit<br>Consisting of: feeding head, end side head, screw, sealing, pin | 252    | M252AU529833001 |

**DENTAL MANIFOLD** 

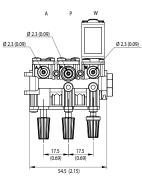
# Dimensions: mm (inches)

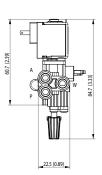

# Type 1 / D01

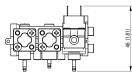






# Type 2 / D02






# Type 3 / D03









# **ASCO™ MINIATURE PRESSURE REGULATOR**

# NON-RELIEVING MANIFOLD MOUNT

The Series 624 non-relieving regulator is designed to control system pressure to a constant maximum set point.

- Lightweight, compact manifold mount interface for easy installation and maintenance
- Output pressure ranges 0-0.7 bar (0-10 psi), 0-1.4 bar (0-20 psi), 0.4 - 2.1 bar (5 - 30 psi)
- Suitable for use in a wide variety of gas applications, and is an excellent choice for use with 95% concentrated oxygen
- Excellent for oxygen therapy and ventilation applications
- Typical applications include:
  - Oxygen Concentrators
  - Respiratory Therapy
  - Ventilators

| Fluids                                | Temperature Range           | Seal Materials* |
|---------------------------------------|-----------------------------|-----------------|
| Air, Inert & Neutral gases, or Oxygen | 0C° to 60C° (32F° to 140F°) | CR, NBR         |

<sup>\*</sup> Ensure that the compatibility of the materials in contact with the fluids is verified

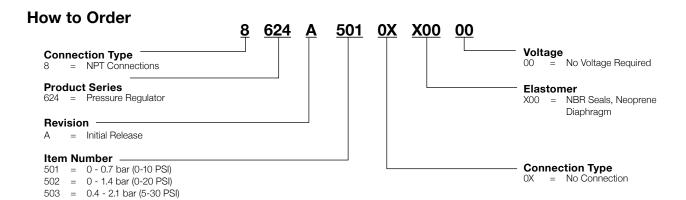
| Manifold Construction |                           |  |  |
|-----------------------|---------------------------|--|--|
| Body                  | РОМ                       |  |  |
| Internal Components   | POM                       |  |  |
| Function              | Non-Relieving Regulator   |  |  |
| Inlet Fitting         | 1/8" NPT                  |  |  |
| Outlet Fitting        | Barb for 1/4" I.D. Tubing |  |  |

# **Alternate Construction Options**

Additional options are available including alternative inlet and regulated pressure ranges. Minimum quantities apply.

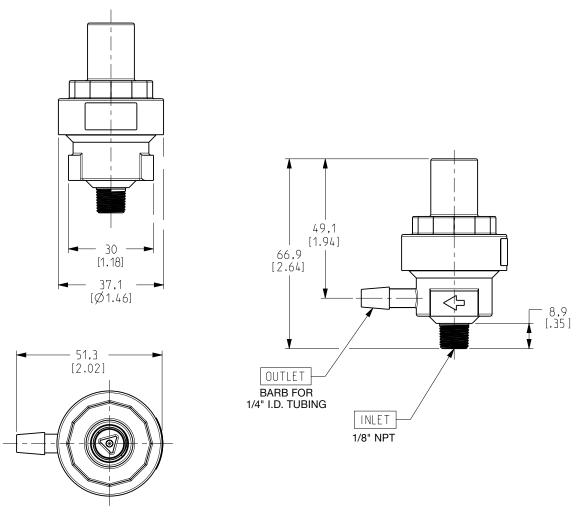
| Specifications |                        |               |               |                            |                |  |
|----------------|------------------------|---------------|---------------|----------------------------|----------------|--|
|                | Inlet Pressure Regulat |               | Pressure      |                            |                |  |
| Port Type      | Max bar (psi)          | Min bar (psi) | Max bar (psi) | Flow (slpm) <sup>(1)</sup> | Catalog Number |  |
|                | 6.9 (100)              | 0.0 (0)       | 0.7 (10)      | 74                         | 8624A501       |  |
| Manifold       | 6.9 (100)              | 0.0 (0)       | 1.4 (20)      | 109                        | 8624A502       |  |
|                | 6.9 (100)              | 0.4 (5)       | 2.1 (30)      | 112                        | 8624A503       |  |

<sup>(1)</sup> Inlet pressure set at 100psig, outlet set at maximum regulated pressure, flow rate at 15% pressure drop from maximum regulated pressure


# To Order

- Select catalog number from specification table above
- Additional seal materials available on request




# **ASCO™ MINIATURE PRESSURE REGULATOR**

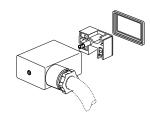
NON-RELIEVING MANIFOLD MOUNT



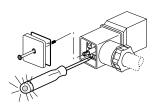
# Dimensions: mm (inches)

Port Type: Manifold Weight: 35.4g (1.25oz)



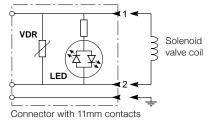

- Spade connector to fit standardized three-pin molded coils:
  - Size 22 connector with 11mm (0.43in) between contacts: EN 175301-803, industry standard form B, for coil types CM5, CM22, C22A, EMX and BMX
  - Size 30 connector with 18mm (0.71in) between contacts: ISO 4400/EN 175301-803 form A, for coil types CM6, CMXX, CM12, CM25, C25A, CM30, CM40, ANX, AMX, JMX, FNX and FMX
- The connectors are available in two versions: standard rotatable version with or without integrated visual LED indicator and electrical protection, or version with non-rotatable 3-core molded-in cable, 2m (78.7in) long
- The standard connector with 18mm contacts is provided with a removable lid allowing access to the wiring for easy checking of power supply without unplugging the connector and without interrupting operation of the solenoid valve

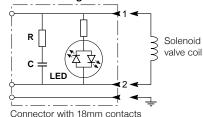
| Connector                                 | Max. Operating                    |                                                                                                                                                                        |  |
|-------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 11mm between contacts (0.43in)            | 18mm between contacts<br>(0.71in) | Temperature                                                                                                                                                            |  |
| EN 175301-803<br>industry standard form B | ISO 4400/EN 175301-803,<br>form A | -40 °C to 80 °C (-40 °F to 176 °F),<br>-40 °C to 125 °C (-40 °F to 257 °F)<br>with silicone seal<br>[version with molded-in cable<br>-5 °C to 70 °C (23 °F to 158 °F)] |  |


| Construction                      |                                                |  |
|-----------------------------------|------------------------------------------------|--|
| Standard version                  | PA (polyamide), glass-fiber reinforced         |  |
| Enclosure with LED and protection | PA                                             |  |
| Enclosure with PVC cable          | PA (polyamide), glass-fiber reinforced         |  |
| Seals                             | NBR [option for 18mm contacts: VMQ (silicone)] |  |

| Electrical Characteristics      |                                |                                |  |  |
|---------------------------------|--------------------------------|--------------------------------|--|--|
|                                 | 11mm between contacts (0.43in) | 18mm between contacts (0.71in) |  |  |
| Number of contacts              | 2 + common ground              | 2 + common ground              |  |  |
| Contact resistance              | ≤ 4m Ω                         | ≤ 4m Ω                         |  |  |
| Connector                       | Spade plug                     | Spade plug                     |  |  |
| Electrical safety               | IEC 335                        | IEC 335                        |  |  |
| Electrical enclosure protection | IP65 (EN 60529)                | IP65 (EN 60529)                |  |  |
| Number of wires (with cable)    | 3                              | 3                              |  |  |







**Rotatable Connector** 



Standard Rotatable Connector with Power Supply Control

# **LED Indicator and Electrical Protection Diagrams**

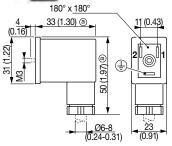




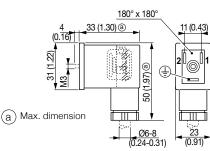
VDR Varistor absorbing the self-inductance of the coil RC circuit absorbing the self-inductance of the coil LED Green light-emitting diode, bidirectional, signalling the presence of voltage across the coil terminals

| Specifications                                          |                                    |                       |                        |                   |         |            |                |            |          |
|---------------------------------------------------------|------------------------------------|-----------------------|------------------------|-------------------|---------|------------|----------------|------------|----------|
|                                                         | Cable                              | Cable Cable O.D.      |                        | Wire              | Max.    |            | Catalog Number |            |          |
| Description                                             | Length                             | 11mm                  | 18mm                   | Cross-<br>Section | Voltage | Туре       | 11mm           | 18m        | ım       |
|                                                         | m (inches)                         | mm (i                 | nches)                 | mm <sup>2</sup>   | V       |            | NBR            | NBR        | VMQ*     |
| Rotatable Connector                                     |                                    |                       |                        |                   |         |            |                |            |          |
| Standard, Without LED Indicator                         | -                                  | 6 to 8 (0.24 to 0.31) | 6 to 10 (0.24 to 0.40) | 1.5               | 250     | 01-02      | 290414-001     | 290411-001 | 88122625 |
|                                                         |                                    |                       |                        |                   | 12      |            | -              | 88122611   | -        |
|                                                         |                                    |                       |                        |                   | 24      |            | 290415-024     | 290412-024 | -        |
| With Integrated LED Indicator and Electrical Protection | -                                  | 6 to 8 (0.24 to 0.31) | 8 to 10 (0.31 to 0.40) | 1.5               | 48      | 01-02      | -              | 290412-048 | -        |
| and Electrical Potestion                                |                                    |                       |                        | 115               |         | 290415-120 | 290412-120     | -          |          |
|                                                         |                                    |                       |                        |                   | 230     |            | 290415-240     | 290412-240 | -        |
| Non-rotatable Connector with                            | Non-rotatable Connector with Cable |                       |                        |                   |         |            |                |            |          |
| Without LED Indicator                                   | 2 (78.7)                           |                       | -                      | 1.5               | 250     | 03- 04     | 88122413       | 88122612   | -        |

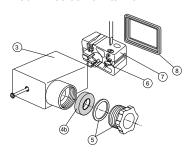
<sup>\*</sup> For use within class H temperature limits


# **Dimensions: mm (inches)**




11mm (0.43in) Lead Wires EN 175301-803, industry standard form B IP65



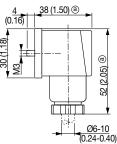

# 290414-001

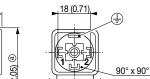


# 290415-024/120/240



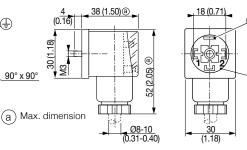
### 290414-001/024/120/240



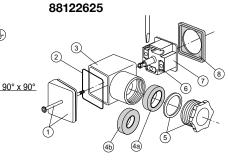


Type 02

18mm (0.71in) Lead Wires ISO 4400/EN 175301-803, form A IP65




### 290411-001 88122625






(1.18)

# 290412-024/048/120/240



# 290411-001

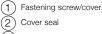


Type 03

11mm (0.43in) Lead Wires EN 175301-803, industry standard form B

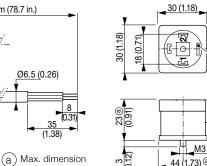
IP65 (non-rotatable terminal holder) 88122413

2m (78.7 in.)


Ø6.5 (0.26)

(0.31)35 (1.38)




18mm (0.71in) Lead Wires ISO 4400/EN 175301-803, form A IP65 (non-rotatable terminal holder)

2m (78.7 in.)





# 88122612



- 88122602/625:
  - 2 seals for cable dia. 8 to 10mm (4a) or cable dia, 6 to 8mm (4b) 88122611/603/604/605/608: 1 seal for cable dia, 8 to 10mm (4a) 88122404/405/406/407/410: 1 seal for cable dia, 6 to 8mm (4b)
- Stuffing box washer and nut
- (6) Cable connection terminal
- Terminal holder
- (8) Connector seal

| Insta | llatior |
|-------|---------|

The connectors can be mounted in any position without affecting operation

M3

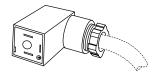
46 (1.81)@

|   | Sizes 03 and 04   |                |  |  |
|---|-------------------|----------------|--|--|
|   | brown wire        | terminal 1 (+) |  |  |
|   | blue wire         | terminal 2 (-) |  |  |
| Γ | green/vellow wire | ground         |  |  |

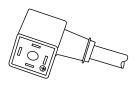
| Туре | L          | Weight                | 1 (kg)             |
|------|------------|-----------------------|--------------------|
| .,pc | m (inches) | without LED indicator | with LED indicator |
| 01   | -          | 0.025                 | 0.025              |
| 02   | -          | 0.030                 | 0.032              |
| 03   | 2 (78.7)   | 0.150                 | -                  |
| 04   | 2 (78.7)   | 0.155                 | -                  |

<sup>&</sup>lt;sup>1</sup> Including seals and screws

35 (1.38)

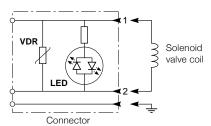

- Spade connector to fit standardized three-pin molded coils:
  - EN 175301-803, industry standard form C (9.4mm), for coil type CM15 (202 Series), DMX and 302, 630, 519, 520, 521 and 578 Series (MEGA)
  - EN 175301-803, form C (8mm), for 302, 630 and 202 Series
- The connectors are available in three versions: standard rotatable version, or version with non-rotatable 3-core molded-in cable, 2m (78.7in) or 5m (196.9in) long, with or without integrated visual LED indicator and electrical protection

| Connector S <sub>i</sub>               | pecification                  | Max. Operating                                                        |  |
|----------------------------------------|-------------------------------|-----------------------------------------------------------------------|--|
| 9.4mm between contacts (0.37in)        | 8mm between contacts (0.31in) | Temperature                                                           |  |
| EN 175301-803 industry standard form C | EN 175301-803,<br>form C      | -25 °C to 60 °C (-13 °F to 140 °F),<br>[version with molded-in cable] |  |


| Construction                      |                            |
|-----------------------------------|----------------------------|
| Standard version                  | PA, glass-fiber reinforced |
| Enclosure with LED and protection | PA or PP                   |
| Enclosure with PVC cable          | PP, glass-fiber reinforced |
| Seals                             | NBR                        |

| Electrical Characteristics      |                                 |                               |  |  |  |
|---------------------------------|---------------------------------|-------------------------------|--|--|--|
|                                 | 9.4mm between contacts (0.37in) | 8mm between contacts (0.31in) |  |  |  |
| Number of contacts              | 2 + common ground               | 2 + common ground             |  |  |  |
| Contact resistance              | $\leq 4 \text{m} \Omega$        | ≤ 4m Ω                        |  |  |  |
| Connector                       | Spade plug                      | Spade plug                    |  |  |  |
| Electrical safety               | IEC 335                         | IEC 335                       |  |  |  |
| Electrical enclosure protection | IP65 (EN 60529)                 | IP65 (EN 60529)               |  |  |  |
| Number of wires (with cable)    | 3                               | 3                             |  |  |  |



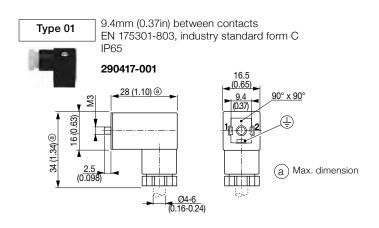


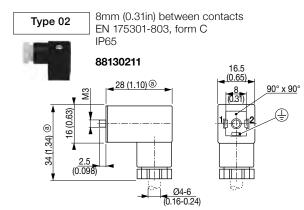

Rotatable Connector 9.4mm or 8mm

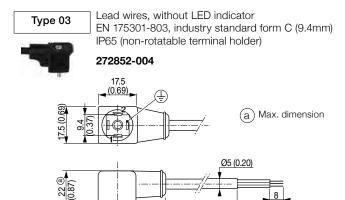


Non-rotatable Connector with Cable

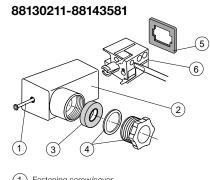
# **LED Indicator and Electrical Protection Diagram**





VDR Varistor absorbing the self-inductance of the coil LED Green light-emitting diode, bidirectional, signalling the presence of voltage across the coil terminals


| Specifications                     |                 |                       |                           |                 |         |                                                             |          |
|------------------------------------|-----------------|-----------------------|---------------------------|-----------------|---------|-------------------------------------------------------------|----------|
| Description                        | Cable<br>Length | Cable O.D.            | Wire<br>Cross-<br>Section | Max.<br>Voltage | Туре    | Catalog Number                                              |          |
|                                    | m (inches)      | mm (inches)           | mm <sup>2</sup>           | V               |         | 9.4mm                                                       | 8mm      |
| Rotatable Connector                |                 |                       |                           |                 |         |                                                             |          |
| Standard, Without LED Indicator    | -               | 4 to 6 (0.16 to 0.24) | 0.6                       | 250 V           | 01 - 02 | 290417-001 (US customers)<br>88143581 (all other customers) | 88130211 |
| Non-rotatable Connector with Cable |                 |                       |                           |                 |         |                                                             |          |
| Without LED Indicator              | 2 (78.7)        | -                     | 0.6                       | 250 V           | 03      | 272852-004                                                  | *        |
| With Integrated LED Indicator and  | 2 (78.7)        |                       | - 0.6 24 V 0              |                 | 04      | -                                                           | -        |
| Electrical Protection              | 5 (196.9)       | _                     | 0.0                       | 24 V            | 04      | 88143593                                                    | -        |

<sup>\*</sup> Contact us


# **Dimensions: mm (inches)**







35 (1.38) @



- Fastening screw/cover
   Enclosure
- 3 Seal for cable diameter 4 to 6mm
- (4) Stuffing box washer and nut
- (5) Connector seal
- (6) Terminal holder
- (7) Cable connection terminal

| Sizes 03 ar       | nd 04          |
|-------------------|----------------|
| brown wire        | terminal 1 (+) |
| blue wire         | terminal 2 (-) |
| areen/vellow wire | around         |

35 (1.38)

2/5m (78.7/196.9 in.)

| _     | L          | Weight <sup>1</sup> kg |                    |  |  |
|-------|------------|------------------------|--------------------|--|--|
| Туре  | m (inches) | without LED indicator  | with LED indicator |  |  |
| 01-02 | -          | 0.015                  | -                  |  |  |
| 03    | 2 (78.7)   | 0.100                  | -                  |  |  |

<sup>&</sup>lt;sup>1</sup> Including seals and screws

# **Options**

• Connectors with cable 5m (196.9in) long available on request

# Installation

The connectors can be mounted in any position without affecting operation

# **POWER-SAVE CONNECTORS**

Once a DC-type solenoid valve is activated, only the holding current, which corresponds to 50% of the inrush voltage, is necessary to keep the valve in position. The power-save connector switches to holding voltage after approx. 70 ms (size 30) or 140 ms (size 22). The holding power is thereby reduced to a quarter of the inrush power. During power reduction, the valve's coil is piloted via PMW voltage pulses.

- The main advantages of a connector with voltage reduction are:
  - Power savings (lower current consumption)
  - Low heat development in the solenoid valve



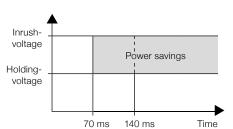
| Construction |    |
|--------------|----|
| Enclosure    | PA |

Power-save connector with voltage reduction

| Electrical Characteristics      |                             |                                |  |  |
|---------------------------------|-----------------------------|--------------------------------|--|--|
|                                 | Size 22                     | Size 30                        |  |  |
| Input Voltage                   | 12/24 VDC ± 10%             | 10 to 30 VDC                   |  |  |
| Output Voltage                  | 12 VDC ± 10%                | 6 to 30 VDC                    |  |  |
| Power Rating                    | Max. 12 W                   | Max. 30 W                      |  |  |
| Connector                       | Spade plug                  | Spade plug                     |  |  |
| Electrical Safety               | Industry standard, form B   | ISO 4400/EN 175301-803, form A |  |  |
| Number of Contacts              | 2 + 1 common ground         | 2 + 1 common ground            |  |  |
| Electrical Enclosure Protection | IP65                        | IP65                           |  |  |
| Cable Diameter                  | 6 to 8mm (0.24in to 0.31in) | 6 to 8mm (0.24in to 0.31in)    |  |  |
| LED Green                       | Solenoid valve actuation    | Solenoid valve actuation       |  |  |
| LED Red                         | -                           | Overcurrent or overvoltage     |  |  |
| Voltage Reduction               | After 140ms                 | After 70ms                     |  |  |
| PWM Frequency                   | 7 KHz                       | 50 KHz                         |  |  |

| Cable Diameter              | 6 to 8mm (0.2            | 24in to 0.31in) | 6 to 8mm     | 6 to 8mm (0.24in to 0.31in) |  |
|-----------------------------|--------------------------|-----------------|--------------|-----------------------------|--|
| LED Green                   | Solenoid valve actuation |                 | Solenoid     | Solenoid valve actuation    |  |
| LED Red                     | -                        |                 | Overcurre    | Overcurrent or overvoltage  |  |
| Voltage Reduction           | After 140ms              |                 | After 70m    | S                           |  |
| PWM Frequency               | 7 KHz                    |                 | 50 KHz       | 50 KHz                      |  |
|                             |                          |                 |              |                             |  |
| Specifications              |                          |                 |              |                             |  |
| Specifications  Description |                          | Size            | Input Voltag | e Catalog Number            |  |

22

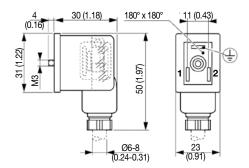

30

12 VDC ± 10%

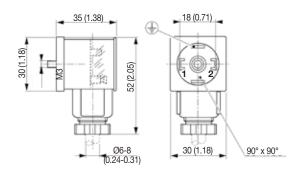
10 to 30 VDC

88100944

88100945



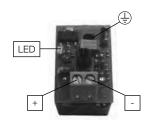

# **POWER-SAVE CONNECTORS**


# Dimensions: mm (inches)

Size 22

11mm (0.43in) between contacts




Size 33 18mm (0.71in) between contacts



# **Electrical Connection**

Size 22

11mm (0.43in) between contacts



Screw terminals: up to 1mm<sup>2</sup> cable

- + Pilot voltage + (12/24 V)
- Pilot voltage (GND)
- Ground terminal, straight through



- 1 Valve voltage +
- 2 Valve voltage -
- 3 Ground terminal (PE)



18mm (0.71in) between contacts



Screw terminals: up to 1mm<sup>2</sup> cable

- + Pilot voltage + (10-30 V)
- Pilot voltage (GND)
- Ground terminal (PE)



- 1 Valve voltage +
- 2 Valve voltage -
- Ground terminal (PE)

# **CONTROL DEVICE**

# **ELECTRONIC CONTROL UNIT**

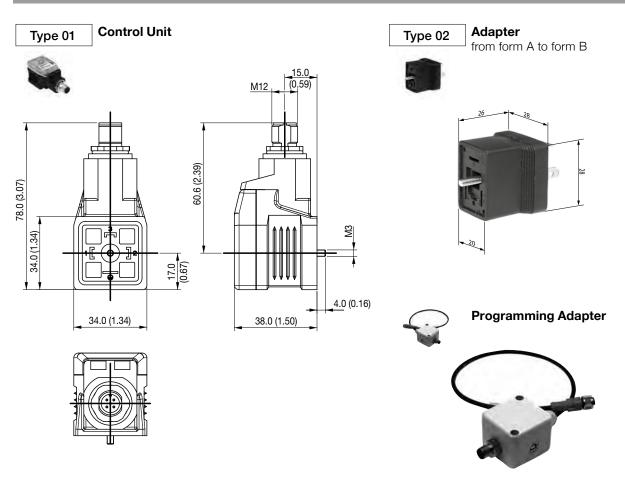
- Converts analog input control signals to coil current of a proportional solenoid valve by means of pulse width modulation
- LED-Display integrated in the connector
- Adjustable UP/DOWN ramp control
- Output coil current independent of coil resistance (temperature) and supply voltage variations
- The electronic circuit is integrated in a standard housing according to DIN EN 175301-803, form A
- Parameter setting via PC interface and programming adapter or, optionally, via the switches integrated in the connector





| General Information |                   |  |
|---------------------|-------------------|--|
| Nominal Voltage     | 12/24 VDC         |  |
| Maximum Current     | 1.2/2.5A          |  |
| Housing             | PA                |  |
| Cover               | PA                |  |
| Screw               | Zinc plated steel |  |
| Seals               | NBR               |  |

| Electrical Characteristics          |                                                             |  |  |
|-------------------------------------|-------------------------------------------------------------|--|--|
| Connector                           | M12, 5 pins                                                 |  |  |
| Connector Specification             | DIN EN 175301-803, form A                                   |  |  |
| Electrical Safety                   | IEC 335                                                     |  |  |
| Electrical Encloseure<br>Protection | IP65 (EN 60529)                                             |  |  |
| Supply Voltage                      | 12 V30 VDC (incl. ripple)                                   |  |  |
| Ramp                                | Selectable ON/OFF, adjustable between 50 ms to 5 s, Up/Down |  |  |
| Adjustable Switching Frequency      | 60 to 1500Hz                                                |  |  |


| Max. Full Load Current | Input Control Signal |                | Ambient Temperature Range |  |
|------------------------|----------------------|----------------|---------------------------|--|
| I <sub>FL</sub>        | U <sub>c</sub>       | I <sub>c</sub> | Ambient Temperature hange |  |
| mA                     | V                    | mA             | °C (°F)                   |  |
| 1200/2400              | 0 - 10               | 4 - 20         | -20 to 65 (-4 to 149)     |  |

| Specifications                                        |          |           |                 |            |
|-------------------------------------------------------|----------|-----------|-----------------|------------|
| Catalog Number: Proportional Valves for               | Time a 1 | Setpoint  | Catalog Number  |            |
| Digital Control Unit                                  | Type     |           | Control Unit    | Adapter    |
| 202A001V to 202A087V                                  |          | 0 - 10 V  | X90850164500100 |            |
| 203B001V and 203B002V<br>60200001, 60200002, 60200004 | 01       | 4 - 20 mA | X90850164500200 | -          |
| 202A201V to 202A208V and 202A513V                     | 02       | 0 - 10 V  | X90850164500100 | 833-064154 |
| 202A201V to 202A208V and 202A513V                     | 02       | 4 - 20 mA | X90850164500200 | 000-004104 |

<sup>1</sup> Refer to the dimensional drawings on the following page

| Proportional Valves Suitable for Control Applications                    |                 |              |  |  |
|--------------------------------------------------------------------------|-----------------|--------------|--|--|
| Description                                                              | Series          | Illustration |  |  |
| 3-port proportional valve for pressure control                           | 602             |              |  |  |
| Posiflow/Preciflow proportional solenoid valves,<br>Flapper proportional | 202-203,<br>068 |              |  |  |

# **Dimensions: mm (inches)**



| Inpu | t and Output Signals                                                                                                                                   |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pin  | Supply                                                                                                                                                 |
| 1    | Voltage supply (see "Electrical Characteristics")                                                                                                      |
| 3    | Analog ground 0 V (GND)                                                                                                                                |
|      | Analog signals                                                                                                                                         |
| 2 4  | Setpoint input (differential input) The range 0100% corresponds to an input voltage of 010 V or an input current of 420 mA (depending on version used) |
|      | Communication                                                                                                                                          |
| 5    | LIN Bus connection The parameters for the device can be set via this connection and our programming adapter                                            |

| Accessories                                                       |                 |
|-------------------------------------------------------------------|-----------------|
| Description                                                       | Catalog Number  |
| Straight M12 female connector, 5 pins, with screw terminals       | 88100256        |
| Right-angle M12 female connector, 5 pins, with screw terminals    | 88100725        |
| Supply cable 2m, 2 x 0.25mm², straight connector                  | 88100726        |
| Supply cable 2m, 2 x 0.25mm², right-angle connector               | 88100727        |
| Supply cable 5m, 6 x 0.56mm², straight connector                  | 88100728        |
| Supply cable 5m, 6 x 0.56mm <sup>2</sup> , right-angle connector  | 88100729        |
| Supply cable 10m, 6 x 0.56mm², straight connector                 | 88100730        |
| Supply cable 10m, 6 x 0.56mm <sup>2</sup> , right-angle connector | 88100731        |
| Adapter DIN EN 175301-803 from form A to form B for Type 02       | 833-064154      |
| Programming adapter                                               | X90850164500300 |

# Installation

• The control unit can be mounted in any position without affecting operation

# **PINCH VALVE TUBING & GUIDE**

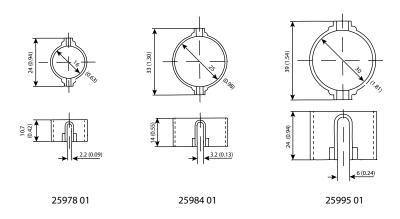
# **Tubing**

- Platinum-cured Bio-Medical Grade silicone tubing designed specifically for analytical and medical devices
- Suitable for a wide range sterilization techniques such as steam autoclaving, gamma radiation, and ethylene oxide
- Excellent flexibility
- No peroxide cure chlorophenyl or PCB by-products
- Meets ISO 10993 guidelines for body contact applications
- Manufactured to the principles of FDA 21 CFR 210/211 cGMPs for Pharmaceutical products
- Available in 5' and 50' lengths

| Specifications            |                                                                                        |
|---------------------------|----------------------------------------------------------------------------------------|
| Tubing Material           | Platinum Cured Silicone                                                                |
| Durometer                 | 50 Shore A                                                                             |
| Tensile Strength at Break | 1388 psi                                                                               |
| Elongation at Break       | 815%                                                                                   |
| Tear Strength             | 263 psi                                                                                |
| Standards                 | Manufactured to the principles of FDA 21 CFR 210/211 cGMPs for Pharmaceutical products |



# **Tubing Catalog Numbers**


| Tubing fo | Tubing for 045, 284, 384 Series |          |           |                 |  |  |  |  |  |  |  |  |  |  |
|-----------|---------------------------------|----------|-----------|-----------------|--|--|--|--|--|--|--|--|--|--|
| Tubing S  | Sizes mm                        | (inches) | Length    | Tubing Catalog  |  |  |  |  |  |  |  |  |  |  |
| ID        | OD                              | Wall     | m (ft)    | Number          |  |  |  |  |  |  |  |  |  |  |
| 0.762     | 1.65                            | 0.444    | 1.52 (5)  | P099AU521738105 |  |  |  |  |  |  |  |  |  |  |
| (0.030)   | (0.065)                         | (0.0175) | 15.2 (50) | P099AU521738150 |  |  |  |  |  |  |  |  |  |  |
| 0.794     | 2.38                            |          | 1.52 (5)  | P099AU521738205 |  |  |  |  |  |  |  |  |  |  |
| (1/32)    | (3/32)                          | 0.794    | 15.2 (50) | P099AU521738250 |  |  |  |  |  |  |  |  |  |  |
| 1.59      | 3.17                            | (1/32)   | 1.52 (5)  | P099AU521738305 |  |  |  |  |  |  |  |  |  |  |
| (1/16)    | (1/8)                           |          | 15.2 (50) | P099AU521738350 |  |  |  |  |  |  |  |  |  |  |
| 1.59      | 4.76                            |          | 1.52 (5)  | P099AU521738405 |  |  |  |  |  |  |  |  |  |  |
| (1/16)    | (3/16)                          |          | 15.2 (50) | P099AU521738450 |  |  |  |  |  |  |  |  |  |  |
| 3.17      | 6.35                            |          | 1.52 (5)  | P099AU521738505 |  |  |  |  |  |  |  |  |  |  |
| (1/8)     | (1/4)                           | 1.59     | 15.2 (50) | P099AU521738550 |  |  |  |  |  |  |  |  |  |  |
| 4.76      | 7.94                            | (1/16)   | 1.52 (5)  | P099AU521738605 |  |  |  |  |  |  |  |  |  |  |
| (3/16)    | (5/16)                          |          | 15.2 (50) | P099AU521738650 |  |  |  |  |  |  |  |  |  |  |
| 6.35      | 9.52                            |          | 1.52 (5)  | P099AU521738705 |  |  |  |  |  |  |  |  |  |  |
| (1/4)     | (3/8)                           |          | 15.2 (50) | P099AU521738750 |  |  |  |  |  |  |  |  |  |  |

# **Tubing Guide**

ASCO offers plastic tubing guides that slide easily onto the valve body of the pinch valves to retain small OD tubing in the pinch valve body.

# **Dimensions: mm (inches)**

# **Tubing Guide**



| Tubing Guide<br>Catalog Number | Max OD of Tubing | Valve Series |            |
|--------------------------------|------------------|--------------|------------|
|                                |                  | SCH284A001   |            |
|                                |                  | SCH284A002   |            |
|                                |                  | SCH284A003   |            |
|                                |                  | SCH284A004   |            |
|                                |                  | SCH284A009   |            |
| 2597801                        | 2.2              | SCH284A010   |            |
| 2597801                        | (0.09)           | SCH284A011   |            |
|                                |                  | SCH284A012   |            |
|                                |                  | SCH384A001   |            |
|                                |                  | SCH384A002   |            |
|                                |                  | SCH384A003   |            |
|                                |                  | SCH384A004   |            |
|                                | 0.0              | SCH284A005   |            |
| 2598401                        | 3.2<br>(0.13)    | SCH284A013   |            |
|                                | (0.10)           | SCH394A005   |            |
|                                |                  | SCH284B006   |            |
|                                |                  | SCH284B007   |            |
| 2500501                        | 6                | 6            | SCH284B014 |
| 2599501                        | (0.24)           | SCH284B015   |            |
|                                |                  | SCH384B006   |            |
|                                |                  | SCH384B007   |            |

# SOLENOID VALVES INFORMATION & TERMINOLOGY

# Solenoid Valves

A solenoid valve is a combination of two functional units:

- A solenoid operator essentially consisting of a coil, core, core tube, shading coil and spring(s).
- A valve body containing orifices in which a disc, diaphragm or piston, etc. is positioned according to the type of technology used.

The valve is opened or closed by movement of the magnetic core which is drawn into a solenoid when the coil is energized.

# Solenoid Valve Terminology

(Fig. 1)

### Coil

Electrical part of the valve consisting of a spool wound with insulated copper wire creating a magnetic flux when energized.

The coil is held in place on the tube with a retaining clip.

### Core

Soft-magnetic component moved by magnetic forces (flux generated by the coil).

### Core spring

Spring which keeps the core in fixed position when the coil is de-energized.

### Core tube

Stainless steel tube closed at one end, installed to improve the magnetic flux of the

solenoid coil upon energization.

### Cover

Cover mounted on the valve body and incorporating a number of orifices.

### Diaphragm

Seal-tight diaphragm isolating the fluid from the control system.

### Disc

Sealing material on the core or disc-holder which shuts off the seat orifice.

### **Manual operator**

Manual operation of the lever to open or close the orifices.

# Manual operator spring

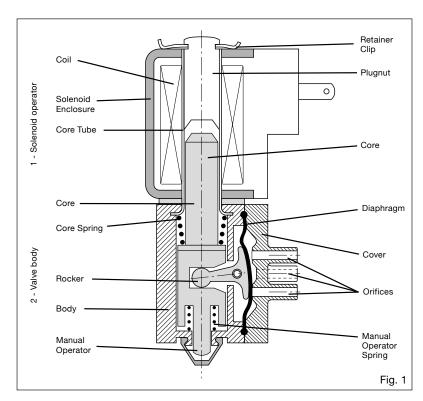
Drawback spring ensuring return of the pulse control device to its initial position.

### Orifices

Orifices for fluid transit.

# **Plugnut**

Stationary core pressed in the closed end of the core tube, installed to improve the magnetic flux of the solenoid coil upon energization.


### Retainer clip

Clip anchoring the coil to the yoke.

### Rocker

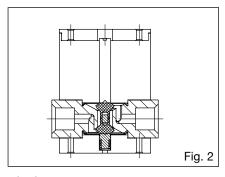
Moving part serving to open and close the orifices for the passage of fluid.

# Valve seat



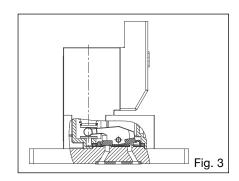
Specially formed border of the main valve.

### Solenoid enclosure


Metal housing around the coil for electrical and mechanical protection, as well as protection against ingress of water or dust.

### Valve body

Main part of the valve with all ports and main seats.

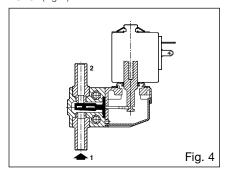

# **Types of Solenoid Valves**

# 2/2-3/2 Solenoid Valves with Fluid Isolation



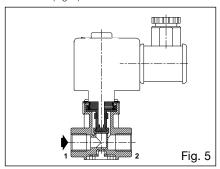
# Diaphragm (Fig. 2)

Diaphragm type solenoid valves are compact, have a very extended service life and a very small internal volume. They are ideal for handling agressive fluids. The valve body is in stainless steel or plastic (PVDF/PP), with a diaphragm in VMQ (silicone), FKM or PTFE. Low power rating.




### Rocker (Fig. 3)

Rocker type solenoid valves are compact, and designed to incorporate a hermetic seal between fluid and control system. These valves are ideal for handling aggressive fluids, or where a maximum level of fluid purity is required. Low power rating and fast response times




### Lever (Fig. 4)



Lever type solenoid valves are designed for high differential pressures and flow rates. Heat dissipation for the electromagnetic part is optimised by separating the control system from the valve itself. These valves are ideally suited for high ambient temperatures. Threaded or spigot connections.

### Bellows (Fig. 5)



Bellows solenoid valves ensure exceptional operating reliability under severe service conditions and extended life service. A body in PEEK or stainless steel, bellows in PTFE and disc in FFKM make these valves suitable for handling highly corrosive fluids at substantial flow rates. Threaded connections.

# Pinch (Fig. 6)

Pinch type solenoid valves provide full bore flow (no internal volume) and extended service life. This is achieved by means of the pinch device, designed specially to operate smoothly with a balanced load. No contamination of the fluid is possible, and operation of the valve is silent. Bidirectional fluid flow.

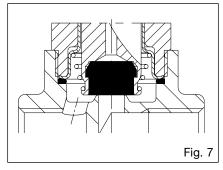
# Direct operated 2/2 solenoid valves

The core is mechanically connected to the disc and opens or closes the orifice, depending on whether the solenoid coil is energized or de-energized.

### Core-disc valve construction (Fig. 7)

Operation is not dependent upon line pressure or rate of flow (zero or maximum rated pressure). These valves are generally available in 2/2 NC/NO and 3/2 NC/NO/U versions.

NC = Normally Closed


NO = Normally Open

U = Universal

### **Pressures**

# Maximum operating pressure differential – MOPD

The maximum operating pressure differential (DP) is the pressure the solenoid operator has to overcome to open (NC function) or



close (NO function) a solenoid valve.

The maximum operating pressure differential refers to the maximum difference in pressure between the inlet and outlet.

If the pressure at the outlet is zero, the supply pressure is to be regarded as the maximum operating pressure differential. In this case, in order to prevent coil burnout, the pressure at the inlet must not exceed the maximum operating pressure differential specified for each valve.

The maximum operating pressure differential may vary according to the fluid or type of power used (AC valves usually have higher pressure ratings than DC valves).

# Minimum operating pressure differential

Minimum operating pressure differential (bar) is that which is required to open the valve and keep it open. The valve will start to close below the minimum operating differential pressure

# Maximum allowable pressure

(according to EN 764)

The maximum allowable pressure is the maximum line or system pressure to which the valve may be subjected in normal service and at a given temperature, generally, ambient temperature, without causing damage.

# **Temperatures**

# Normal ambient temperature

The normal ambient temperature is assumed to be in accordance with standard conditions as specified in ISO 554

ambient temperature : 20 °C (68 °F)

ambient pressure : 1013 mbar

(14.69 psi)

relative humidity : 65%

# Maximum ambient temperature

The maximum ambient temperature is based on test conditions to determine safe limits for coil insulation. The temperature is determined under continuously energized conditions and

with maximum fluid temperatures (as listed) existing in the valve.

### Minimum ambient temperature

The minimum ambient temperature of a valve is greatly affected by application and construction.

Damage may occur when liquids solidify above the specified minimum temperature. Be sure to observe minimum and maximum limits.

### Maximum fluid temperature

The maximum fluid temperature listed is valid for an ambient temperature of 20 °C (68 °F) and 100% RD (Relative Duty Time).

# **Viscosity**

Viscosity is the resistance of a fluid to flow, due to internal friction. Viscosity affects the flow rate of a valve considerably and the flow factor is reduced when viscous fluids are to pass through the valve.

There are two types of viscosity:

- a) dynamic viscosity, expressed in Pa.s (Pascal seconds) or Poises
- b) kinematic viscosity, which is the ratio between dynamic viscosity and density of the fluid

Kinematic viscosity is expressed in mm<sup>2</sup>/s or cStokes; in this catalog only kinematic viscosity is considered.



# VALVE CONSTRUCTION **MATERIALS**

# **Rubbers**

### CR (chloroprene)

Principally used in refrigeration systems (Freon 22) as an external seal. Neoprene is also utilized for oxygen service valves. Suitable for alcohol, mild acids, water, air, ammonia, argon gas and other gases

It has a temperature range of -20 °C (-4 °F) to 90 °C (194 °F).

# CSM (chlorosulfonated polyethylene)

Used to handle strong oxidizing fluids, edible liquids, and many other common chemicals, etc. Not recommended for aromatic or chlorinated hydrocarbons. It has a temperature range of -40 °C (-40 °F) to 120 °C (248 °F).

Hypalon® is an example for CSM; it is part of the family of elastomers

(Hypalon® is a registered trademark of Dupont Performance Elastomers)

### EPDM (ethylene-propylene)

Suitable for temperatures above the NBR range (i.e. excellent for phosphate ester type fluids; not recommended for use with petroleum base fluids), except ethylene-propylene has a somewhat higher temperature range than NBR. Useful as "O" ring gaskets on steam valves due to low compression set.

Ethylene-propylene is generally suitable for most photographic solutions as well as numerous chemical solutions.

Ethylene-propylene is selected for applications which have a wider temperature range than the NBR temperature range, such as handling hot water and steam. Ethylenepropylene has an extremely wide range of fluid compatibility but has the distinct disadvantage that it cannot be used with petroleum-based fluids or contaminated fluids (such as lubricated air). It has a temperature range of -20 °C (-4 °F) to 180 °C (356 °F).

# FFKM (perfluoroelastomer)

Elastomer used in the manufacture of joints and seals, combining resistance to aggressive chemical environments, swelling and high temperatures. Particularly suitable for pharmaceutical applications requiring extreme conditions of cleanliness.

Kalrez® is an example for FFKM; it is part of the family of elastomers.

(Kalrez® is a registered trademark of Dupont Performance Elastomers)

# FKM (fluoroelastomer)

Suitable for temperatures above the NBR range. Excellent resistance to many petroleum oils, gasoline, dry-cleaning fluids and jet fuels. Not compatible for ketones, halogenated hydrocarbons and freons.

FKM is a fluorocarbon elastomer which was primarily developed for handling hydrocarbons such as jet fuels, gasolines, solvent, etc., which normally caused detrimental swelling to NBR. FKM has a high temperature range similar to ethylenepropylene but has the advantage of being somewhat more resistant to "dry heat". FKM has a rather wide range of chemical compatibility. It has a temperature range of -40 °C (-40 °F) to 190 °C (374 °F).

Viton® is an example for FKM; it is part of the family of elastomers.

(Viton® is a registered trademark of Dupont Performance Elastomers)

# **FVMQ** (fluorosilicone)

A silicone with a trifluoropropyl group on each siloxane unit. Good resistance to heat and most solvents. Good low temperature characteristics.

### **NBR** (nitrile)

Standard compound for service in petroleum oils, air, water, mild acids, acetylene, kerosene, lime solutions, liquified petroleum gases and turpentines. Not recommended for highly aromatic gasolines or acids.

NBR is commonly referred to as a nitrile rubber and is standard synthetic elastomer for accomplishing resilient-type seating or sealing in most values. It has excellent compatibility for most air, water and light oil applications. It has a temperature range of .20 °C (-4 °F) to +90 °C (194 °F).

Buna® is an example for NBR; it is part of the family of elastomers

(Buna® is a registered trademark of DuPont de Nemours and Company or its affiliates)

# SBR (styrene butadiene)

SBR is a polymer used in the manufacture of seals. Good resistance to swelling in acids, non-organic and organic bases, alcohols and water.

# **UR** (urethane)

Used for water, air at normal ambient temperatures, alcohol, non-aromatic compounds, ether, edible fats and oils and hydraulic fluids. Its principal assets are high strength and excellent abrasion resistance. It is not recommended for ketones and strong oxidizing agents. It has a temperature range of -30 °C (-22 °F) to 40 °C (104 °F).

# VMQ (silicone)

Known as the only elastomer which, under certain conditions, can be utilized for both high and low temperature, which is its principal use. Also handles hydrogen peroxide and some acids. Not good for steam; poor disc life. Fluorosilicone compounds are noted to have better fuel resistance.

### Note:

Temperature limitations for elastomers are somewhat dependent on their specific functional usage in a valve.

Obviously, a diaphragm which stiffens at low temperature is objectionable while an "O' ring gasket of similar material which stiffens at low temperature may still be performing its sealing function.

Generally, temperatures down to -20 °C (-4 °F) can be considered tolerable and special elastomers such as silicone and low temperature NBR must be selected for use below this temperature.

These elastomers can extend the lower limit to approximately -40  $^{\circ}$ C (-40  $^{\circ}$ F) depending on specific usage. The upper limit for elastomers is generally around 100 °C (212 °F), except FKM, EPDM and VMQ which can, on specific applications, be utilized up to 190 °C (374 °F).

PTFE (see following page) is a commonly used gasket or disc material not considered an elastomer. This unique chemical-resistant material can be used from -270  $^{\circ}$ C (-454  $^{\circ}$ F) to 250 °C (482 °F) with proper design limitations.

# **Plastics**

# PA (polyamide)

Polyamide resins are known to be very durable and also resistant to many chemicals. A heat resistant type polyamide is always used in ASCO valves.

# PARA (polyarylamide)

Aromatic polyamide in which at least one monomer contains a benzene ring, giving it improved mechanical, thermal and chemical resistance.

lxef® is an example for polyarylamide; it is part of the family of thermoplastics.

(Ixef® is a registered trademark of Solvay S.A.)

### PC (polycarbonate)

Good with polar solvents, salt solutions and water applications. Not recommended for non-polar solvents. A polycarbonate type thermoplastic known for having high impact strength and good resistance to inorganic acids and aliphatic hydrocarbons. Not suitable for use with air containing phosphate esters (found in synthetic oils).

# PE (polyethylene)

A family of plastics varying from low melting point to high heat distortion temperature; and from flexible to rigid. Although somewhat soft, they offer good electrical, chemical and moisture resistance and physical properties.



# PEEK (polyetheretherketone)

High performance thermoplastic with exceptional resistance to a wide range of chemical environments and high temperatures.

# PEI (polyetherimide)

This resin has good heat deflection characteristics. Good chemical resistance to non-oxidizing acids and polar solvents. Questionable usage on alkaline solutions.

Ultem® is an example for PEI; it is part of the family of plastics.

(Ultem® is a registered trademark of General Electric Company)

# POM (polyacetal or polyoxymethylene)

Acetal resin type thermoplastics are extremely rigid but not brittle. They provide good toughness, tensile strength, stiffness and long life. They are non-toxic and resistant to most solvents.

Delrin® is an example for polyacetal; it is part of the family of plastics.

(Delrin® is a registered trademark of DuPont de Nemours and Company or its affiliates)

# PP (polypropylene)

A thermoplastic known to have excellent resistance to inorganic salts, mineral acids and gases. It offers good resistance to photographic solutions and is one of the few plastics that has the ability to withstand steam sterilization.

# PPS (polyphenylene sulfide)

This resin has outstanding chemical resistance and no known solvents below 200 °C (392 °F) It has low friction, good wear resistance and high tensile strength.

Ryton® is an example for PPS; it is part of the family of plastics.

(Ryton® is a registered trademark of Chevron Philips Chemical Company)

# **PSU** (polysulfone)

Known as one of the most heat resistant of the thermoplastics. It has excellent chemical resistance when used for inorganic acids, alkalies and aliphatic hydrocarbons.

## PTFE (polytetrafluoroethylene)

A fluorcarbon resin known to be suitable for disc material where all other synthetic materials have failed. Teflon® is not easily fabricated and is known to have objectionable "cold flow" characteristics.

Teflon® is an example for PTFE; it is part of the family of plastics.

(Teflon® is a registered trademark of DuPont de Nemours and Company or its affiliates)

### **PTFE** Reinforced

PTFE reinforced is a form of PTFE having fillers which have been added for improved mechanical properties. PTFE and TPFE with fillers are considered more of a plastic than a resilient-type material. They are virtually unattacked by any fluid. Their temperature usage ranges from discs for cryogenic valves to discs for steam valves. The "cold flow" characteristics may contribute to leakage particularly on gases. They have a temperature range of -270 °C (-454 °F) to 250 °C (482 °F).

Rulon® is an example for reinforced PTFE, it is part of the family of plastics.

(Rulon® is a registered trademark of Saint Gobain Performance Plastics Corporation)

# **PUR** (polyurethane)

Polyurethane is a multipurpose, robust product. It has good adhesion to a variety of substrates, providing resistance to humidity and impact strength.

### **PVC** (polyvinyl chloride)

Known for its chemical inertness but has somewhat less temperature resistance than most other plastics. PVC has excellent resistance to strong alkalies, mineral acids, salts and many chemicals corrosive to conventional materials.

### **PVDF** (polyvinylidene fluoride)

Polymer resistant to atmospheric agents and the majority of chemical products at ambient temperature. High purity PVDF compounds are particularly recommended for medical applications.

# TPE (thermoplastic polyester elastomer)

Used in some diaphragm applications. HYT elastomers show high strength in tension, compression and flex. They are superior to polyurethane rubbers in load-bearing capacity.

Hytrel $^{\circledR}$  (HYT) is an example for a polyester elastomer, it is part of the family of plastics.

(Hytrel® is a registered trademark of DuPont)

# **Metals**

### Ag (silver)

Shading coil material for stainless steel valves.

### Al (aluminum)

Shading coil material for special fluids or for making washers, etc. Die cast aluminum is generally used for bodies for low pressure gas valves and can only be used with "water free" systems. It can be noted that die cast aluminum is successfully used in oil and gasoline applications.

### Cu (copper)

Primarily used for shading coil.

# Cu Sn (bronze)

Casting bronze is used for body forging. Good sealing and casting properties, resistant to abrasion.

# Cu Zn Pb (brass)

Forging brass is used in our body forgings. Forging brass has a composition of 59% copper, 2% lead and 39% zinc.

# Fe Cr Ni (stainless steel AISI 303 or 304)

One of the most widely used steels containing 18% chromium and 8% nickel. Used for valve bodies, springs and internal parts. Known as stainless steel type 303 or 304

# Fe Cr Ni Mo (stainless steel AISI 316)

Alloy containing approx 17% chromium, 12% nickel and 2% molybdenum. Highly corrosion resistant

# Fe Cr Ni Mo (stainless AISI 316L)

Alloy containing 16 to 18% chromium, 11 to 14% nickel and 2.5 to 3% molybdenum. Valve bodies made from this material provide excellent resistance to particularly aggressive fluids.

# Ni Fe (nickel iron)

Core material for low temperature fluids (below -100 °C) particularly for "long stroke" solenoids.

### Pb (lead)

Used for lead-clad copper gaskets.

### 7amak

Zinc alloy containing approx. 4% aluminum, 0.04% magnesium and 1% copper. Used, for example, for the bodies of air treatment equipment.



# **CHEMICAL RESISTANCE GUIDE**

# **GENERAL**

Our valves are available to control most acids, alcohol, bases, solvents and corrosive gases and liquids. Modified or special designs are sometimes required depending upon the fluid and application.

Corrosion occurs either as a chemical or electro-chemical reaction. Therefore, consideration must be given to both the

galvanic and electromotive force series, as well as to pressure, temperature and other factors that might be involved in the application.

This guide provides information on most common corrosive and non-corrosive, unmixed gases and liquids.

Mixtures of different fluids and their

temperatures are not included in this table. It's the user's responsibility to ensure the chemical and physical compatibility of the body and other materials with the fluids used.

For applications where abnormal conditions exist and for other types of valves, operations and fluids, contact us with full details of the operating conditions.

| Fluids                                                                                                                                                                            | Τ        |                                 |                             |                              | body          | mate          | erials        | ;             |                |          |                |                |               |          | oth           | er m     | ateria        | als in        | cont           | act v         | vith fl       | uid      |               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------|-----------------------------|------------------------------|---------------|---------------|---------------|---------------|----------------|----------|----------------|----------------|---------------|----------|---------------|----------|---------------|---------------|----------------|---------------|---------------|----------|---------------|
| ↑       =       Excellent         →       =       Acceptable         ∨       =       Not recommended         ↓       =       Do not use         -       =       No data available | Steel    | Stainless Steel<br>AISI 303/304 | Stainless Steel<br>AISI 316 | Stainless Steel<br>AISI 316L | Aluminum      | Bronze        | Cast Iron     | Brass         | PA             | PEEK     | PPS            | Silver         | Copper        | CR       | EPDM          | FFKM     | FKM           | NBR           | UR             | PET           | POM           | PTFE     | TPE           |
| Acetaldehyde                                                                                                                                                                      | 7        | 1                               | 1                           | 1                            | $\rightarrow$ | 1             | 1             | $\downarrow$  | <b>→</b>       | 1        | $\rightarrow$  | 1              | <b>1</b>      | 7        | 1             | 1        | $\downarrow$  | $\downarrow$  | <b>1</b>       | 7             | 1             | 1        | $\rightarrow$ |
| Acetic acid                                                                                                                                                                       | 7        | $\rightarrow$                   | $\rightarrow$               | <b>→</b>                     | 7             | 7             | 7             | 1             | $\rightarrow$  | 1        | 1              | 1              | 7             | 7        | $\rightarrow$ | 1        | $\rightarrow$ | $\rightarrow$ | 1              | $\rightarrow$ | 1             | 1        | <b>1</b>      |
| Acetic anhydride                                                                                                                                                                  | 7        | <b>→</b>                        | <b>→</b>                    | <b>→</b>                     | $\rightarrow$ | 7             | 7             | <b>1</b>      | 7              | 1        | 1              | 1              | 7             | <b>→</b> | <b>→</b>      | 1        | <b>1</b>      | 7             | <b>1</b>       | <b>→</b>      | 1             | 1        | <b>1</b>      |
| Acetone                                                                                                                                                                           | 1        | 1                               | 1                           | 1                            | 1             | 1             | 1             | 1             | 7              | 1        | 1              | 1              | 1             | 7        | 1             | 1        | <b>1</b>      | <b>1</b>      | <b>1</b>       | <b>1</b>      | $\rightarrow$ | 1        | <b>1</b>      |
| Acetonitrile                                                                                                                                                                      | <b>→</b> | 1                               | 1                           | 1                            | 1             | -             | 1             | -             | -              | 1        | -              | -              | -             | 1        | <b>→</b>      | 1        | <b>1</b>      | 7             | <b>1</b>       | <b>→</b>      | -             | 1        | <b>→</b>      |
| Acetophenone                                                                                                                                                                      | -        | 1                               | 1                           | 1                            | $\rightarrow$ | -             | 1             | 1             | 1              | -        | $\rightarrow$  | -              | -             | 1        | 1             | 1        | <b>1</b>      | <b>1</b>      | <b>1</b>       | $\rightarrow$ | -             | 1        | -             |
| Acetyl chloride                                                                                                                                                                   | 1        | →                               | 1                           | 1                            | J             | 1             | →             | →             | 7              | -        | 1              | -              | 1             | 1        | 7             | 1        | 1             | 1             | 1              | $\downarrow$  | 1             | 1        | $\downarrow$  |
| Acetylene                                                                                                                                                                         | 1        | 1                               | 1                           | 1                            | 1             | 7             | 1             | <b>→</b>      | 7              | 1        | 7              | <b>1</b>       | 1             | 7        | 1             | 1        | 1             | <b>→</b>      | 1              | 1             | 1             | 1        | 1             |
| Air (lubricated)                                                                                                                                                                  | 1        | 1                               | 1                           | 1                            | 1             | 1             | 1             | 1             | 1              | 1        | 1              | -              | -             | 1        |               | 1        | 1             | 1             | 1              | 1             | 1             | 1        | 1             |
| Air (unlubricated, dry)                                                                                                                                                           | 1        | 1                               | 1                           | 1                            | 1             | 1             | 1             | 1             | 1              | 1        | 1              | -              | _             | 1        | 1             | 1        | 1             | 1             | 1              | 1             | 1             | 1        | 1             |
| Alcohol ethyl (ethanol)                                                                                                                                                           | 1        | 1                               | 1                           | 1                            | '<br>→        | 1             | 1             | <u> </u>      | 1              | _        | -              | 1              | $\rightarrow$ | 1        | <u> </u>      | 1        | ·<br>  →      | 1             | <b>1</b>       | 1             | 1             | 1        | 1             |
| Alcohol methyl (methanol)                                                                                                                                                         | 1        | 1                               | 1                           | 1                            | <i>,</i>      | 1             | 1             | <b>1</b>      | 1              | _        | 1              | 1              | ,<br>→        | 1        | 1             | 1        | J             | 1             | <b>1</b>       | 1             | 1             | 1        | 1             |
| Aluminum sulfate                                                                                                                                                                  | 7        | '<br>  →                        | <u> </u>                    | 1                            | 1             | 7             | <b>\</b>      | 7             | <i>γ</i>       | 1        | 1              |                | →             | 1        | 1             | 1        | 1             |               | 1              | 1             | 1             | 1        | '<br>  →      |
| Ammonia, anhydrous                                                                                                                                                                | 1        | 1                               | 1                           | 1                            | <i>ν</i>      |               | $\rightarrow$ | 7             | <i>'</i>       | 1        | <i>K</i>       | <i>A</i>       | 1             | 1        | 1             |          | <b>1</b>      | <i>→</i>      | <b>1</b>       | <i>K</i>      | <i>κ</i>      | 1        | <i>A</i>      |
| Ammonia, aqueous                                                                                                                                                                  | 1        | '<br>  →                        | 1                           | 1                            | <u> </u>      | <i>A</i>      | <i>→</i>      | <b>J</b>      | <u>-</u><br>لا | -        | <u>-</u><br>لا | <u>-</u><br>لا | 7             | '<br>  → | 1             | ,<br>→   | <b>∀</b>      | <i>K</i>      | 1              | 1             |               | 1        | -             |
| , ,                                                                                                                                                                               | 1        | ,<br>→                          | 1                           | 1                            | <b>↓</b>      | 7             | <i>,</i>      | <b>1</b>      | 7              |          | 7              | 7              | <i>لا</i>     | ,<br>  → | 1             |          |               | 7             | <b>1</b>       | 1             | <b>↓</b>      | 1        |               |
| Ammonia, water  Ammonium hydroxyde                                                                                                                                                | <u>/</u> | →                               |                             |                              | 7             | 7             | 7             | <b>1</b>      | 7              | <u> </u> | →              | <b>J</b>       | <b>→</b>      | <i>→</i> | 1             | -<br>→   | <i>→</i>      | 7             | <b>1</b>       | <u>'</u>      | Ψ<br>→        | 1        | -<br>→        |
| Amyl acetate                                                                                                                                                                      | 7        | <i>→</i>                        | <i>→</i>                    |                              |               | 1             | 7             | $\rightarrow$ | 1              | 1        | 1              | -              | 1             | J        | 1             | <b>1</b> | J             | <b>↓</b>      | $\downarrow$   |               | 1             | 1        | <i>A</i>      |
| Aniline                                                                                                                                                                           | 7        | →                               | 1                           | 1                            | <i>γ</i>      | 7             | →<br>—        | <i>→</i>      | <i>K</i>       | 1        |                | 1              | 1             | 1        |               | 1        | →             | 1             | <b>1</b>       | 1             | 1             | 1        | 7             |
|                                                                                                                                                                                   | 1        | 1                               | 1                           | 1                            | 1             | →             | <i>→</i>      | 1             | 1              | 1        | 1              | 1              | 7             | <b>↓</b> | <b>1</b>      | 1        | 1             | 7             | 1              | -             | -             | 1        | 1             |
| Argon  Barium chloride                                                                                                                                                            | <u>/</u> |                                 | 1                           | 1                            | <b>1</b>      | 1             | <i>γ</i>      | 1             | <i>κ</i>       | 1        | 1              | -              | →             | 1        | <u> </u>      | 1        | 1             | 1             | 1              | 1             | 1             | 1        | <br>  →       |
|                                                                                                                                                                                   | 7 7      | →<br>  →                        | 1                           | 1                            | <b>↓</b>      | 7             | <i>κ</i>      | <br>  →       | <i>R</i>       |          | 1              | 1              | <b>→</b>      | 1        | 1             | 1        | 1             | 1             | <br>  →        | 1             | <b>→</b>      | 1        | →<br>  →      |
| Barium hydroxide                                                                                                                                                                  |          |                                 | 1                           | 1                            |               |               |               | <b>→</b>      |                | -        | <br>  →        |                | <b>→</b>      |          |               | 1        |               | 1             | <del> </del> → |               |               |          | <del>→</del>  |
| Benzaldehyde                                                                                                                                                                      | 1        | ↑<br>↑                          |                             | <u> </u>                     | ↑<br>→        | 1             | 1             | →<br>→        | →<br>\         | 1        |                |                | →             |          |               | 1        |               | i i           |                | \<br>\        | ↑<br>↑        | <b>↑</b> | →<br>  →      |
| Benzene pure                                                                                                                                                                      | <b>→</b> |                                 | 1                           | <b>↑</b>                     |               | ↑<br>→        | <b>→</b>      | <del>→</del>  | ,              |          | <b>→</b>       | 1              |               | <b>↓</b> | <u>\</u>      |          | <b>↑</b>      | \<br>\        | <b>↓</b>       | <b>→</b>      |               | <b>↑</b> |               |
| Benzene sulfonic acid                                                                                                                                                             | →<br>`   | 1                               | 1                           | 1                            | <b>↓</b>      |               | <b>↓</b>      | →<br>→        | ,              | <b>→</b> | →<br>•         | 1              | ,             |          | 7             | 1        | 1             | →<br>->       | <b>↓</b>       | <b>→</b>      | 7             | <b>↑</b> | →<br>         |
| Borax                                                                                                                                                                             | <b>→</b> | 1                               | 1                           | 1                            | 7             | 1             | 1             |               | , K            | 1        | 1              | -              | <b>→</b>      | <b>→</b> | 1             | <b>↑</b> | <b>↑</b>      |               | 1              | 1             | 1             | <b>↑</b> | 1             |
| Bromine                                                                                                                                                                           | 7        | <b>1</b>                        | 7                           | 7                            | <b>↓</b>      | <b>↓</b>      | <b>↓</b>      | -             | ,              | 1        | <b>↓</b>       | <b>→</b>       | ,             | <b>↓</b> | <b>\</b>      | 1        | 1             | <b>\</b>      | <b>1</b>       | <b>→</b>      | <b>↓</b>      | <b>↑</b> | <b>+</b>      |
| Butadiene                                                                                                                                                                         | 1        | 1                               | 1                           | 1                            | 1             | 1             | 1             | 1             | 7              | -        | 1              | -              | ,             | <b>→</b> | 7             | 1        | 1             | <b>1</b>      | ↓              | ↓             | 1             | 1        | ↓             |
| Butane                                                                                                                                                                            | 7        | 1                               | 1                           | 1                            | <b>→</b>      | <b>→</b>      | <b>→</b>      | 1             | 1              | 1        | 1              | -              | 7             | 1        | <b>↓</b>      | 1        | 1             | 1             | 7              | <b>→</b>      | 1             | 1        | <b>→</b>      |
| Butanol (aqueous, butyl alcohol)                                                                                                                                                  | 1        | 1                               | 1                           | 1                            | <b>→</b>      | 1             | <b>→</b>      | 1             | 1              | -        | 1              | <b>→</b>       | <b>→</b>      | 1        | <b>→</b>      | 1        | 1             | 1             | <b>1</b>       | <b>→</b>      | 1             | 1        | <b>→</b>      |
| Butylene                                                                                                                                                                          | 7        | 1                               | 1                           | 1                            | 1             | →<br>^        | 1             | 7             | 1              | -        | 1              | -              | <b>↓</b>      | 7        | <b>↓</b>      | 1        | 1             | <b>→</b>      | <b>↓</b>       | <b>→</b>      | 1             | 1        | <b>→</b>      |
| Butyl acetate                                                                                                                                                                     | 1        | 1                               | 1                           | 1                            | 1             | 1             | 1             | <b>→</b>      | 1              | 1        | 1              | <b>→</b>       | 1             | ↓        | <b>→</b>      | 1        | <b>1</b>      | <b> </b>      | <b>1</b>       | <b>→</b>      | <b>→</b>      | 1        | 7             |
| Butylamine                                                                                                                                                                        | 1        | 1                               | 1                           | 1                            | 1             | <b>→</b>      | 1             | -             | 1              | -        | <b>1</b>       | -              | -             | ↓        | <b>↓</b>      | 1        | <b>1</b>      | ↓             | <b>1</b>       | <b>→</b>      | <b>↓</b>      | 1        | <b>1</b>      |
| Butyl ether                                                                                                                                                                       | 1        | 1                               | 1                           | 1                            | 1             | -             | 1             | -             | ↓              | 1        | 1              | -              | -             | 7        | 7             | 1        | ↓             | <b>→</b>      | <b>→</b>       | ↓             | <b>1</b>      | 1        | <b>1</b>      |
| Calcium chloride                                                                                                                                                                  | 7        | $\rightarrow$                   | <b>→</b>                    | <b>→</b>                     | 1             | $\rightarrow$ | <b>↓</b>      | -             | 7              | 1        | 1              | 1              | $\rightarrow$ | 1        | 1             | 1        | 1             | 1             | 1              | 1             | <b>1</b>      | 1        | 1             |
| Calcium sulfate                                                                                                                                                                   | <b>→</b> | <b>→</b>                        | 1                           | 1                            | <b>→</b>      | $\rightarrow$ | 1             | <b>1</b>      | <i>K</i>       | 1        | 1              | 1              | <b>→</b>      | 1        | 1             | 1        | 1             | 1             | 1              | 1             | <b>1</b>      | 1        | -             |
| Carbon dioxide (wet/dry)                                                                                                                                                          | 1        | 1                               | 1                           | 1                            | 1             | <b>→</b>      | 1             | <b>1</b>      | 1              | -        | 1              | 1              | 1             | <b>→</b> | <b>→</b>      | 1        | 1             | 1             | 1              | 1             | 1             | 1        | 7             |
| Carbon tetrachloride                                                                                                                                                              | 1        | 7                               | 7                           | 7                            | ↓<br>·        | 1             | ↓             | 1             | 7              | 1        | <b>→</b>       | <b>→</b>       | K             | ↓        | <b>↓</b>      | 1        | 1             | 7             | ↓              | <b>→</b>      | 1             | 1        | ↓             |
| Caustic soda                                                                                                                                                                      | <b>→</b> | 1                               | 1                           | 1                            | 1             | $\rightarrow$ | $\rightarrow$ | <b>→</b>      | 1              | 1        | <b>→</b>       | -              | -             | <b>→</b> | 1             | 1        | <b>→</b>      | 7             | <b>→</b>       | -             | 1             | 1        | <b>→</b>      |
| Cellosolve                                                                                                                                                                        | 1        | $\rightarrow$                   | 1                           | 1                            | $\rightarrow$ | -             | $\rightarrow$ | 1             | 1              | -        | 1              | -              | -             | ↓        | $\rightarrow$ | 1        | R             | ↓             | ↓              | 1             | 1             | 1        | ↓             |

Please note that the chemical resistance may be influenced by many factors, such as temperature, concentration, etc. This data is for reference only.



| Fluids                             | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                        | hadu          | mat           | ariolo        |               |               |               |               |               |               |               | o th          | er m          | otori         | olo in        | oont          | oot v         | rith f        | id       |               |
|------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|----------|---------------|
|                                    |               | 1_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I_                      | _                      | ooay          | mate          | erials        | ·<br>         | Ι             |               | Ι             | -             |               |               | Oth           | er m          | ateria        | ลเซ เก        | COM           | act V         | VILET T       | uia      | Г             |
| Excellent                          |               | ₽<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Steel                   | Steel                  |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |          |               |
| → = Acceptable > = Not recommended |               | 18.85<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>13.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05<br>15.05 | S                       | S                      | Ε             |               | _             |               |               |               |               |               |               |               |               |               |               |               |               |               |               |          |               |
| ↓ = Do not use                     |               | 88 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36<br>36                | 368                    | <u>.</u>      | စ္ခ           | <u> </u>      |               |               |               |               | ١.            | ē             |               | _             |               |               |               |               |               |               |          |               |
| - = No data available              | Steel         | Sail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stainless (<br>AISI 316 | Stainless<br>AISI 316L | Aluminum      | Bronze        | Cast Iron     | Brass         |               | PEEK          | PPS           | Silver        | Copper        | <u>_</u>      | EPDM          | FFKM          | Ϋ́            | NBR           | <u></u>       | l <del></del> | POM           | PTE      | TE            |
| - 140 data available               | क             | Stainless Steel<br>AISI 303/304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ₽S.                     | ξŔ                     | ₹             | 鱼             | පී            | ф             | PA            | 퓝             | 풉             | S             | ပိ            | S.            | 出             | ᄩ             | モ             | 뿔             | H.            | 표             | 2             | 딥        | ≞             |
| Chlorobenzene                      | <b>→</b>      | <b>→</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                       | 1                      | 1             | 1             | R             | 1             | K             | 1             | 1             | $\rightarrow$ | $\rightarrow$ | ↓             | ↓             | 1             | 1             | ↓             | ↓             | <b>→</b>      | ↓             | 1        | 1             |
| Chloroform                         | 7             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | <b>\</b>      | 1             | 7             | $\rightarrow$ | 1             | 1             | $\rightarrow$ | 1             | $\rightarrow$ | $\downarrow$  | 1             | 1             | 1             | 1             | 1             | 1             | 1             | 1        | 7             |
| Chlorosulfonic acid                | 7             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                       | 7                      | 1             | 7             | J             | $\rightarrow$ | 7             | 7             | $\downarrow$  | -             | 1             | <b>↓</b>      | <b>↓</b>      | 1             | 7             | <b>1</b>      | $\downarrow$  | 7             | J             | 1        | 1             |
| Chlorine (wet)                     | 7             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>→</b>                | <b>→</b>               | <b>1</b>      | <b>→</b>      | 7             | $\downarrow$  | 7             | <b>1</b>      | 1             | -             | -             | J             | 7             |               | 1             | 1             | 1             | 1             | 1             | 1        | 1             |
| Chromic acid (25%)                 | 7             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | 7             | 7             |               | <b>V</b>      | 7             | 7             | 1             | $\downarrow$  | 1             | 1             | 1             | 1             | 1             | <b>V</b>      | 1             | <b>→</b>      | 1             | 1        | 1             |
|                                    |               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>                | K                      |               |               | _             | _             | →<br>3        | _             | _             | _             |               | 1             | _             |               | _             |               | _             | →             | _ •           | _        |               |
| Chromic acid, concentrated         | R             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                       |                        | 1             | 7             | 1             | <b>1</b>      |               | 7             | ↓             | -             | <b>↓</b>      |               | 7             | 1             | 1             | <b>↓</b>      | ↓             | →             | ↓             | 1        | ↓             |
| City gas                           | -             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | -             | -             | -             | 1             | -             | -             | -             |               | ↓             | <b>→</b>      | ↓             | 1             | 1             | 1             | $\rightarrow$ | -             | -             | 1        | -             |
| Coffee                             | 7             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | 1             | 1             | 7             | -             | 1             | -             | -             | -             | 1             | 1             | 1             | 1             | 1             | 1             | ↓             | 1             | 1             | 1        | -             |
| Coke oven gas                      | 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ↑                       | ↑                      | -             | <b> </b> →    | ↑             | 7             | -             | -             | -             | ↑             | ↑             | 7             | ↓             | ↑             | ↑             | 7             | ↓             | -             | -             | ↑        | -             |
| Detergent                          | <b>→</b>      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | 1             | 1             | $\rightarrow$ | $\rightarrow$ | 1             | -             | 1             | -             | -             | $\rightarrow$ | 1             | 1             | 1             | 1             | 1             | 1             | 1             | 1        | $\rightarrow$ |
| Diesel fuel                        | 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | 1             | 1             | 1             | 1             | 1             | -             | 1             | 1             | 1             | $\rightarrow$ | <b>↓</b>      | 1             | 1             | 1             | 7             | $\rightarrow$ | 1             | 1        | <b>→</b>      |
| Dimethyl formamide                 | <del> </del>  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | 1             | ·<br>→        | →             | 7             | 1             | 1             | ·<br>→        | ·<br>  -      | 1             | 1             | →             | 1             | V             |               | 1             | 1             | 7             | 1        | <b>→</b>      |
| Dimethyl phtalate                  | 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | 1             | -             | 1             | 1             | 1             | -             | 1             | -             | <u> </u>      | 1             | →             | 1             | <br>→         | <b>↓</b>      | -             | 1             | -             | 1        | 1             |
| • •                                | -             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                        |               |               |               |               |               |               |               |               |               |               |               |               |               |               | _             | _             |               | _        | -             |
| Ethylene chloride                  | 1             | <b>→</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                       | 1                      | <b>→</b>      | 1             | 7             | <b>→</b>      | 1             | 1             | $\rightarrow$ | 1             | R             | <b>1</b>      | 7             | 1             | <b>→</b>      | <b>1</b>      | <b> </b>      | 7             | 1             | 1        | 7             |
| Ethylene diamine                   | $\rightarrow$ | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                       | 1                      | 1             | $\rightarrow$ | 1             | <b>1</b>      | $\rightarrow$ | _             | $\rightarrow$ |               | ↓             | 1             | 1             | $\rightarrow$ | ↓             | 1             | <b>1</b>      | 1             | 1             | 1        | <u> </u>      |
| Ethylene dichloride                | 1             | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\rightarrow$           | $\rightarrow$          | <b>↑</b>      | 1             | 1             | 1             | 1             | $\rightarrow$ | $\rightarrow$ | 1             | $\rightarrow$ | ↓             | K             | 1             | $\rightarrow$ | ↓             | ↓             | ↓             | 1             | 1        | 7             |
| Ethylene glycol                    | $\rightarrow$ | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                       | 1                      | $\rightarrow$ | 1             | $\rightarrow$ | $\rightarrow$ | 1             | 1             | 1             | 1             | $\rightarrow$ | 1             | 1             | 1             | 1             | 1             | $\rightarrow$ | 1             | $\rightarrow$ | 1        | 1             |
| Ethylene oxide                     | $\rightarrow$ | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | 1             | 1             | 7             | 1             | 7             | -             | <b>1</b>      | 7             | 1             | 1             | 7             | 1             | 1             | 1             | 1             | 7             | 1             | 1        | 1             |
| Ferric chloride                    | $\downarrow$  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                       | 7                      | $\downarrow$  | 7             | 1             | <u> </u>      | 1             | $\rightarrow$ | 1             | <b>→</b>      | 1             | →             | 1             | 1             | 1             | 1             | 1             | 1             | _ ·           | 1        | <u> </u>      |
| Ferrous chloride                   | 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <i>K</i>                | <i>K</i>               | <del>*</del>  | <i>K</i>      | J             | $\downarrow$  | <i>K</i>      | 1             | 1             | →             | 7             | <b>→</b>      | 1             | 1             | 1             | 1             | -             | 1             | →             | 1        | 1             |
|                                    |               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                        | •             |               |               |               |               |               | · ·           |               |               |               |               |               |               |               |               |               |               |          |               |
| Formaldehyde                       | <b>→</b>      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | <b>→</b>      | 1             | <b>↓</b>      | $\rightarrow$ | 1             | $\rightarrow$ | 7             | 1             | <b>→</b>      | <b>→</b>      | 1             | 1             | $\rightarrow$ | <b>→</b>      | <b>\</b>      | 1             | 1             | 1        | $\rightarrow$ |
| Formic acid                        | 7             | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                       | 1                      | <b>1</b>      | 7             | ↓             | $\rightarrow$ | R             | $\rightarrow$ | 1             | -             | ↓             | 1             | 1             | 1             | 7             | 71            | ↓             | 1             | ↓             | 1        | <b>→</b>      |
| Freon 11                           | $\rightarrow$ | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | ↑                      | 7             | ↑             | $\rightarrow$ | $\rightarrow$ | 7             | ↑             | 1             | ↑             | 1             | ↓             | ↓             | $\rightarrow$ | ↑             | $\rightarrow$ | ↓             | ↑             | 1             | 1        | 1             |
| Freon F-12                         | <b>→</b>      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | 1             | 1             | $\rightarrow$ | $\rightarrow$ | K             | 1             | 1             | 1             | 1             | 1             | $\rightarrow$ | -             | $\rightarrow$ | <b>→</b>      | 1             | 1             | 1             | 1        | 1             |
| Freon 22                           | <b>→</b>      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | <b>1</b>      | -             | $\downarrow$  | 1             | 1             | 1             | 1             | 1             | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | 1             | $\rightarrow$ | 1             | $\downarrow$  | 1             | 1             | 1        | 1             |
| Freon T WD602                      | <b>→</b>      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | 1             | -             | -             | 1             | 1             | -             | 1             | -             | 1             | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | 1             | <b>→</b>      | 1             | -             | -             | 1        | l -           |
| Fuel oil                           | 1             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>                | <u> </u>               | $\uparrow$    | 1             | $\rightarrow$ |               | <u> </u>      | -             | <u> </u>      | 1             | 7             | <b>→</b>      | 1             | 1             | <u> </u>      | 1             | 7             | 1             | $\rightarrow$ | <u> </u> | <b> </b>      |
| Fuel oil #6                        | 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | 7             | 1             | <u></u>       | <u></u>       | 1             |               | 1             | -             | <i>'</i>      |               |               | 1             | 1             |               |               | -             |               | 1        | 1             |
|                                    |               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                        |               |               |               |               | -             | -             | -             |               |               | 1             | <b> </b>      |               |               |               |               |               | <b>1</b>      | -        |               |
| Fuel ASTM Ref Fuel A               | 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | K             | 1             | 1             | 1             | 1             | -             | 1             | -             | R             | <b>→</b>      | ↓             | -             | 1             | 1             | 1             | -             | ↓             | 1        | 1             |
| Fuel ASTM Ref Fuel B               | 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | R             | 1             | 1             | 1             | 1             | -             | 1             | -             | 7             | ↓             | ↓             | -             | 1             | 1             | $\rightarrow$ | -             | ↓             | 1        | 1             |
| Fuel ASTM Ref Fuel C               | ↑             | ↑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ↑                       | ↑                      | 7             | ↑             | ↑             | ↑             | ↑             | -             | ↑             | -             | 7             | ↓             | ↓             | -             | ↑             | →             | ↓             | -             | ↓             | ↑        | ↑             |
| Fuel ASTM #1 Oil                   | 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | K             | 1             | 1             | 1             | 1             | -             | 1             | -             | -             | 1             | <b>1</b>      | -             | 1             | 1             | 1             | -             | <b>1</b>      | 1        | 1             |
| Fuel ASTM #2 Oil                   | $\uparrow$    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | 7             | 1             | $\uparrow$    | 1             | 1             | -             | 1             | -             | -             | $\rightarrow$ | $\downarrow$  | -             | 1             | 1             | <b>→</b>      | -             | $\downarrow$  | 1        | $\uparrow$    |
| Fuel ASTM #3 Oil                   | 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | K             | 1             | 1             | 1             | 1             | _             | 1             | -             | _             | 7             | 1             | _             | 1             | 1             | <b>→</b>      | -             | 1             | 1        | 1             |
| Fuel ASTM #4-5 Oil                 | 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>                | <u> </u>               | - K           | 1             | <u> </u>      | <u> </u>      | <u> </u>      | _             | <u> </u>      | -             | _             | 1             | J             | _             | 1             | _ ·           | 1             | _             | J             | 1        | <u> </u>      |
|                                    | + '           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                       | -                      |               | -             |               | _             | -             |               | -             |               | _             | Ψ             | -             | <u> </u>      | -             |               | -             |               | Ψ             |          | _             |
| Furan                              | ļ -           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | 1             | -             | 1             | -             | -             | -             | 1             | -             | -             | 1             | ↓             | 1             | 7             | <b> </b>      | -             | <i>R</i>      | Ψ.            | 1        | -             |
| Furfural                           | 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | 1             | 1             | 1             | <b>→</b>      | <b>→</b>      | -             | 1             | <b>→</b>      | $\rightarrow$ | ↓             | <b>→</b>      | 1             | <b>1</b>      | <b>↓</b>      | 7             | <b>↓</b>      | <b>→</b>      | 1        | <b>→</b>      |
| Gasoline (petrol)                  | 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | -             | 1             | 1             | 1             | 1             | 1             | 1             | 1             | R             | $\rightarrow$ | ↓             | 1             | 1             | 1             | $\rightarrow$ | ↓             | 1             | -        | 1             |
| Gasoline 100 octane                | -             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | ↑                      | -             | -             | -             | 71            | ↑             | -             | ↑             | -             | -             | →             | ↓             | -             | ↑             | ↑             | $\rightarrow$ | ↓             | ↑             | ↑        | 1             |
| Glycogenic acid                    | 7             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | -             | $\rightarrow$ | 7             | -             | $\rightarrow$ | -             | 1             | -             | -             | -             | $\rightarrow$ | -             | -             | 7             | $\rightarrow$ | 1             | 1             | 1        | -             |
| Glycol                             | 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | -             | 1             | 1             | -             | -             | 1             | 1             | 1             | 1             | 1             | 1             | 1             | 1             | 1             | <b>→</b>      | -             | 1             | 1        | -             |
| Helium                             | 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | 1             | 1             | 1             | 1             | $\rightarrow$ | 1             | 1             | -             | -             | 1             | 1             | 1             | 1             | 1             | 1             | 1             | 1             | 1        | l -           |
| Heptane                            | 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>                | 1                      | 1             | 1             | 1             | 1             | 1             | 1             | 1             | 1             | 1             |               | <b>1</b>      | 1             | 1             | 1             | _ <u>'</u>    | -             | 1             | 1        | <b>→</b>      |
| <u> </u>                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                        |               |               |               |               | 1             |               |               |               | <u>'</u>      |               |               |               |               | _             |               |               | _             |          | _             |
| Hydraulic fluids                   | <b>→</b>      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | 1             | 1             | 1             | 1             |               | -             | 1             | -             | -             | ↓             | <b>→</b>      | 1             | 1             | <b> </b>      | <b>1</b>      | <b>1</b>      | <b>→</b>      | 1        | 1             |
| Hydraulic oil                      | 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | 1             | 1             | 1             | 1             | 71            | -             | 1             | 1             | 1             | $\rightarrow$ | 1             | 1             | 1             | ↓             | 1             | ↓             | <b>→</b>      | 1        | 1             |
| Hydrofluoric acid (50%)            | ↓             | ↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                       | R                      | 1             | R             | 1             | R             | ↓             | 1             | R             | $\rightarrow$ | ↓             | $\rightarrow$ | 1             | 1             | $\rightarrow$ | R             | ↓             | $\rightarrow$ | ↓             | 1        | ↓             |
| Hydrogen gas                       | 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | 1             | 1             | 1             | 1             | $\rightarrow$ | 1             | 1             | 1             | 1             | 1             | 1             | 1             | 1             | 1             | 1             | 1             | -             | 1        | 1             |
| Hydrogen peroxide (30%)            | 7             | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\rightarrow$           | $\rightarrow$          | $\rightarrow$ | 7             | 1             | 1             | 7             | 1             | $\rightarrow$ | 1             | 1             | 1             | $\rightarrow$ | 1             | 1             | 1             | -             | 1             | 1             | 1        | 1             |
| Hydrogen sulfide (dry hot)         | 7             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | 7             | 7             | 7             | 7             | 7             | 1             | <b>→</b>      | J             | 1             | <b>→</b>      | 1             | 1             | 1             | 1             | <b>→</b>      | 1             | 1             | 1        | 1             |
| Isobutylene                        | 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | 1             | 1             | 1             | 1             | 1             | _             | 7             | -             | -             | <b>1</b>      | <b>\</b>      | 1             | 1             | 7             | <i>K</i>      | -             | <u> </u>      | 1        | <u> </u>      |
|                                    |               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                        |               |               |               |               |               |               |               |               |               | _             |               |               |               |               | -             |               | _             |          |               |
| Jet fuels (JP1 through 5)          | 1             | <b>↑</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                       | 1                      | 1             | 1             | 1             | <b>↓</b>      | 7             | -             | 1             | -             | -             | 7             | <b>\</b>      | 1             | 1             | 1             | <b>→</b>      | <b>→</b>      | 1             | <b>1</b> | -             |
| Jet fuels (JP 6)                   | 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | -             | 1             | 1             | <b>↓</b>      | -             | -             | -             | -             | 1             | ↓             | ↓             | 1             | 1             | 1             | ↓             | \             | 1             | 1        | -             |
| Kerosene (kerosine)                | 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | 1             | 1             | 1             | 1             | 1             | 1             | 1             | 1             | $\rightarrow$ | $\rightarrow$ | ↓             | 1             | 1             | 1             | $\rightarrow$ | $\rightarrow$ | 1             | 1        | 1             |
| Lactic acid                        | 7             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | K             | 7             | 1             | 1             | 7             | 1             | 1             | $\rightarrow$ | 7             | $\rightarrow$ | $\rightarrow$ | 1             | 1             | 71            | -             | 1             | 1             | 1        | 1             |
| Liquid natural gas (LNG)           | 1 -           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 1                      | 1             | -             | -             | 1             | -             | -             | -             | -             | -             | -             | -             | -             | -             | -             | -             | -             | -             | 1        | -             |
|                                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | 1                      | 1             |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |          |               |
| Liquid oxygen (LOX)                | ↓             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | $\downarrow$           | $\downarrow$  | 1             | $\downarrow$  | 1             | <b>1</b>      | _             | <b>1</b>      | _             | -             | <b>↓</b>      | <b>1</b>      | $\rightarrow$ | <b>↓</b>      | 1             | 1             | -             | _             | 1        | _             |



| Fluids                                                                                                                                        |               |                                 |                             |                              | body          | mate          | erials        | ;             |               |          |               |               |                |               | oth           | er m     | ateri          | als in        | cont           | act v         | vith f        | uid      |               |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------|-----------------------------|------------------------------|---------------|---------------|---------------|---------------|---------------|----------|---------------|---------------|----------------|---------------|---------------|----------|----------------|---------------|----------------|---------------|---------------|----------|---------------|
| <ul> <li>↑ = Excellent</li> <li>→ = Acceptable</li> <li>∨ = Not recommended</li> <li>↓ = Do not use</li> <li>- = No data available</li> </ul> | Steel         | Stainless Steel<br>AISI 303/304 | Stainless Steel<br>AISI 316 | Stainless Steel<br>AISI 316L | Aluminum      | Bronze        | Cast Iron     | Brass         | PA            | PEEK     | PPS           | Silver        | Copper         | CR            | EPDM          | FFKM     | FKM            | NBR           | UR             | PET           | POM           | PTE      | TPE           |
| Liquid petroleum gas (LPG)                                                                                                                    | -             | 1                               | 1                           | 1                            | R             | -             | -             | -             | $\rightarrow$ | -        | -             | 1             | 1              | $\rightarrow$ | 1             | 1        | 1              | 1             | 1              | 1             | $\rightarrow$ | 1        | $\rightarrow$ |
| Lubricating oils, di-ester                                                                                                                    | 1             | 1                               | 1                           | 1                            | -             | 1             | 1             | -             | $\rightarrow$ | -        | 1             | 1             | 1              | R             | 1             | 1        | 1              | $\rightarrow$ | $\rightarrow$  | -             | -             | 1        | 1             |
| Lubricating oils, petroleum base                                                                                                              | 1             | 1                               | 1                           | 1                            | 1             | -             | 1             | 1             | -             | -        | -             | -             | $\rightarrow$  | $\rightarrow$ | 1             | 1        | 1              | $\rightarrow$ | $\rightarrow$  | 7             | 1             | 1        | 1             |
| Lubricating oils, SAE 10, 20, 30, 40                                                                                                          | 1             | 1                               | 1                           | 1                            | 1             | -             | 1             | 1             | -             | -        | -             | -             | -              | $\rightarrow$ | 1             | 1        | 1              | 1             | $\rightarrow$  | K             | 1             | 1        | 1             |
| Magnesium acetate                                                                                                                             | 1             | 1                               | 1                           | 1                            | <b>1</b>      | 7             | 7             | $\rightarrow$ | $\rightarrow$ | -        | 1             | -             | -              | -             | 1             | -        | 1              | <b>1</b>      | -              | 1             | -             | 1        | -             |
| Magnesium hydroxide                                                                                                                           | 1             | 1                               | 1                           | 1                            | <b>1</b>      | 7             | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | 1        | 1             | 7             | 7              | $\rightarrow$ | 1             | 1        | 1              | $\rightarrow$ | 7              | 1             | 1             | 1        | $\rightarrow$ |
| Methane                                                                                                                                       | 1             | 1                               | 1                           | 1                            | 1             | 1             | 1             | 1             | 1             | 1        | 1             | 1             | 1              | $\rightarrow$ | 1             | 1        | 1              | 1             | 7              | $\rightarrow$ | 1             | 1        | $\rightarrow$ |
| Methyl ether ketone (MEK)                                                                                                                     | 1             | 1                               | 1                           | 1                            | 1             | 1             | 1             | 1             | $\rightarrow$ | 7        | $\rightarrow$ | 1             | 1              | 1             | 1             | 1        | 1              | <b>1</b>      | 1              | 7             | $\rightarrow$ | 1        | $\rightarrow$ |
| Mineral oil                                                                                                                                   | 1             | 1                               | 1                           | 1                            | 1             | 1             | 1             | 1             | 1             | -        | 1             | 1             | $\rightarrow$  | $\rightarrow$ | 1             | 1        | 1              | 1             | 1              | $\rightarrow$ | 1             | 1        | 1             |
| Morpholine                                                                                                                                    | <b>→</b>      | $\rightarrow$                   | $\rightarrow$               | $\rightarrow$                | 1             | $\rightarrow$ | $\rightarrow$ | -             | $\rightarrow$ | -        | $\rightarrow$ | -             | -              | 1             | 1             | 1        | 1              | <b>1</b>      | -              | -             | -             | 1        | -             |
| Naphta                                                                                                                                        | 1             | 1                               | 1                           | 1                            | 1             | 1             | $\rightarrow$ | 7             | 1             | -        | <b>→</b>      | 1             | <b>→</b>       | 7             | 1             | 1        | 1              | 7             | 7              | 7             | 1             | 1        | 1             |
| Natural gas                                                                                                                                   | <b>→</b>      | 1                               | 1                           | 1                            | 1             | 1             | $\rightarrow$ | $\rightarrow$ | 1             | 1        | 1             | 1             | $\rightarrow$  | 1             | 1             | 1        | 1              | 1             | $\rightarrow$  | 1             | 1             | 1        | <b>→</b>      |
| Nitric acid (10%)                                                                                                                             | 7             | 1                               | 1                           | 1                            | <u></u>       | 7             | $\downarrow$  | 1             |               | 1        |               | -             | 1              | <u>·</u>      | →             | 1        | 1              | 1             | 7              | 1             | 7             | 1        | <b>→</b>      |
| Nitric acid, concentrated                                                                                                                     | ↓             | 1                               | 1                           | 1                            | <b>\</b>      | 1             | 1             | 1             | 1             | 7        | 1             | -             | 1              | 1             | 1             | <b>→</b> | 1              | 1             | 1              | 1             | 7             | 1        | 1             |
| Nitro benzene                                                                                                                                 | 1             | <b>→</b>                        | 1                           | 1                            | 7             | <b>→</b>      | 7             | -             | 7             | 1        | <b>→</b>      | 1             | 7              | $\downarrow$  | $\downarrow$  | 1        | $\rightarrow$  | $\downarrow$  | $\downarrow$   | $\rightarrow$ | <b>→</b>      | 1        | $\downarrow$  |
| Nitro methane                                                                                                                                 | $\rightarrow$ | 1                               | 1                           | 1                            | 1             | <b>→</b>      | $\rightarrow$ | -             | $\rightarrow$ | -        | $\rightarrow$ | -             | 1              | 7             | $\rightarrow$ | 1        | 1              | 1             | 1              | 7             | 1             | 1        | 1             |
| Nitrogen                                                                                                                                      | 1             | 1                               | 1                           | 1                            | 1             | 1             | 1             | 1             | 1             | 1        | 1             | 1             | 1              | 1             | 1             | 1        | 1              | 1             | 1              | 1             | 1             | 1        | <b>→</b>      |
| Nitro propane                                                                                                                                 | -             | 1                               | 1                           | 1                            | 1             | -             | 1             | -             | -             | -        | -             | -             | -              | 1             | <b>→</b>      | 1        | 1              | 1             | 1              | -             | -             | 1        | -             |
| Octane                                                                                                                                        | -             | -                               | 1                           | 1                            | -             | -             | -             | -             | -             | -        | -             | -             | -              | 1             | 1             | 1        | 1              | 1             | 1              | 1             | -             | 1        | -             |
| Octane carboxylic acid                                                                                                                        | -             | -                               | -                           | -                            | _             | -             | _             | _             | -             | _        | _             | -             | _              | -             | -             | -        | <u> </u>       | 1             | J              | -             | -             | 1        | -             |
| Octanol                                                                                                                                       | _             | _                               | 1                           | 1                            | _             | -             | _             | _             | _             | _        | _             | _             | -              | $\rightarrow$ | 1             | -        | 1              |               | J              | -             | -             | 1        | T -           |
| Oleic acid                                                                                                                                    | 7             | <b>→</b>                        | 1                           | 1                            | 1             | $\rightarrow$ | $\rightarrow$ | 7             | 1             | _        | _             | 1             | 7              | <b>→</b>      | <i>'</i>      | 1        | _ ·            | <b>→</b>      | <b>→</b>       | 1             | 1             | 1        | 1             |
| Olive oil                                                                                                                                     | 1             | <b>→</b>                        | 1                           | 1                            | 1             | 1             | 1             | <b>→</b>      | →             | _        | 1             | -             | _              | $\rightarrow$ | <b>→</b>      | 1        | 1              | 1             | 1              | 1             | <u> </u>      | 1        | †÷            |
| Oxygen, cold                                                                                                                                  | →             | <b>→</b>                        | ·<br>→                      | ·<br>  →                     |               |               | -             | 1             | _             | _        | <u> </u>      | _             | <b>→</b>       | 1             | 1             | 1        | 1              |               | 1              | -             | -             | 1        | -             |
| Oxygen 121 - 204 °C (250 - 400 °F)                                                                                                            | -             | -                               | _                           | -                            | _             | -             | _             | -             | 1             | -        | 1             | -             | _              | 1             | 1             | 1        | <u> </u>       | J             | <u> </u>       | -             | -             | 1        | T -           |
| Oxygen, gas                                                                                                                                   | 1             | 1                               | 1                           | 1                            | _             | 1             | 1             | 1             | <b>→</b>      | _        | J             | <b>→</b>      | 1              | <b>→</b>      | 1             | -        | 1              | 1             | 1              | _             | -             | 1        | -             |
| Ozone (dry)                                                                                                                                   | 1             | 1                               | 1                           | 1                            | $\rightarrow$ | 1             | 1             | 1             | 7             | 7        | 7             | <b>→</b>      | Ţ              | 7             | <u> </u>      | 1        | 1              | 1             | 1              | 1             | <b>1</b>      | -        | 7             |
| Palm oil                                                                                                                                      | 7             | 1                               | 1                           | 1                            | 1             | 7             | 1             | _             | -             | _        | _             | _             | 1              | <i>K</i>      | _             | -        | 1              | 1             |                | -             | 1             | 1        | _             |
| Palmic acid                                                                                                                                   | 7             | <u>'</u>                        | 1                           | 1                            |               | -             | 7             | 7             | 1             | _        | $\rightarrow$ | _             | _ <del>'</del> | <br>→         | <b>→</b>      | 1        | 1              | 1             | 1              | -             | <u> </u>      | 1        | <b>-</b>      |
| Paraffin                                                                                                                                      | 1             | 1                               | 1                           | 1                            | 1             | 1             | 1             | 1             | 1             | 1        | -             | _             | <b>→</b>       | <b>→</b>      | 1             | 1        | 1              | 1             | _ <del> </del> | 1             | 1             | 1        | _             |
| Pentane                                                                                                                                       | -             |                                 | 1                           | 1                            | 1             | -             |               | <b>1</b>      |               | -        | _             | 1             | <i>→</i>       | 1             | 1             | 1        | 1              | 1             | J              | -             | 1             | 1        | -             |
| Pentanol                                                                                                                                      | _             | _                               |                             | -                            |               | _             |               | -             | -             | _        | _             | -             | -              | 1             | 1             | -        | _ <del> </del> |               | <b>1</b>       | _             | -             | 1        | _             |
| Perchloroethylene ("Perk")                                                                                                                    | <b>→</b>      | 1                               | 1                           | 1                            | <b>1</b>      | <b>→</b>      | <b>→</b>      | -             | 7             | 1        | 1             | 1             | <b>→</b>       | 1             | <b>1</b>      | 1        | 1              | J             | <b>V</b>       | <b>1</b>      | 1             | 1        | 1             |
| Petrol                                                                                                                                        | <i>→</i>      | 1                               | 1                           | 1                            | $\rightarrow$ | 1             | $\rightarrow$ | - K           | 1             | 1        | 1             | -             | _              | $\rightarrow$ | 1             | 1        | 1              | 1             | $\rightarrow$  | 1             | 1             | 1        | -             |
| Petroleum benzine                                                                                                                             | 1             | 1                               | 1                           | 1                            | <i>K</i>      | <u> </u>      | 1             | <b>→</b>      |               | _        | 1             | -             | _              |               | 1             | -        | 1              | 1             | <i>→</i>       | <u> </u>      | <u> </u>      | 1        | -             |
| Petroleum ether                                                                                                                               | →             | 1                               | 1                           | 1                            | →             |               |               | 1             | 1             | 1        | 1             | -             | _              | <i>→</i>      | <b>↓</b>      | 1        | 1              | 1             | <i>→</i>       | 1             | 1             | 1        |               |
| Petroleum naphtha                                                                                                                             | 1             | 1                               | 1                           | 1                            | <i>κ</i>      | 1             | _             | -             |               | -        | -             | _             | _              |               | 1             | -        | 1              | 1             | ,<br>→         | -             |               | 1        | -             |
| Petroleum oil above 121 °C (250 °F)                                                                                                           | 1             | 1                               | 1                           | 1                            | 7             | 1             | _             | _             | <i>→</i>      | _        | _             | _             | _              | J             | 1             | 1        |                | 1             | J              | _             | <i>→</i>      | 1        | Ė             |
| Petroleum oil below 121 °C (250 °F)                                                                                                           | 1             | 1                               | 1                           | 1                            | <i>κ</i>      | 1             | -             | -             | →<br>→        |          | -             | <u> </u>      | <u> </u>       | <b>→</b>      | 1             | 1        | →<br>→         | 1             | <b>→</b>       | _             | →             | 1        | <u> </u>      |
| Phenol                                                                                                                                        | <br>  →       |                                 |                             |                              | →<br>2        |               | <br>↓         | -<br>→        | <i>γ</i>      | -<br>→   | 1             | 1             | <br>  →        | <b>→</b>      | 1             | 1        | 1              |               | <b>→</b>       | -             | 1             | 1        | <u> </u>      |
| Phenilic acid                                                                                                                                 | -             | -                               | 1                           | -                            | 7             | <del>→</del>  | _             | <b>→</b>      | - 7           |          |               |               | -              | 1             | 1             | -        | <br>  →        | <b>1</b>      | <b>1</b>       | - 3           | -             | 1        | 1             |
| Phosphoric acid 10%                                                                                                                           | _<br>→        | -<br>→                          | →                           | -<br>→                       | _<br>↓        | →<br>→        | _<br>↓        | <b>↓</b>      | -             | 1        | 1             | -<br>→        | <br>↓          | <b>→</b>      | 1             | 1        | <b>→</b>       | 1             | 1              | 1             | <br>↓         | 1        | -             |
| Phosphoric acid, concentrated                                                                                                                 |               |                                 | <b>→</b>                    | <b>→</b>                     | 1             | 7             | 1             | <b>↓</b>      | 7             | 7        | 1             | →<br>→        | 1              | <b>→</b>      | → T           | 1        | ↑<br>↑         | 1             |                |               | <b>1</b>      | _        | _             |
| Pine oil                                                                                                                                      | 7             | <b>↓</b>                        | _                           | _                            | -             |               | <b>→</b>      | <b>→</b>      | ·             |          | T →           | _             | _              |               |               | _        | _              | $\rightarrow$ | 1 -            | 1             | _             | ↑<br>•   | <b>↓</b>      |
| Poly propylene glycol                                                                                                                         | -             | 1                               | ↑<br>•                      | ↑<br>↑                       | ↑<br>•        | ↑<br>↑        |               |               | 1             | 1        |               | -             | -              | <b>↓</b>      | <b>↓</b>      | ↑<br>↑   | ↑<br>↑         |               |                | _             | 1             | ↑<br>↑   | ↓             |
| 7, 0,                                                                                                                                         | 1             | 1                               | 1                           | 1                            | 1             | 1             | →<br>         | 1             | <b>→</b>      | -        | 1             | -             | -              | 1             | 1             | 1        | 1              | 1             | -              | <b>↑</b>      | <b>1</b>      | 1        | -             |
| Potassium acetate                                                                                                                             | -             | <b>→</b>                        | <b>→</b>                    | <b>→</b>                     | <b>↓</b>      | -             | 1             | -             | -             | -        | -             | 1             | <b>→</b>       | <b>→</b>      | 1             | 1        | <b>↓</b>       | <b>→</b>      | ↓              | 1             | 1             | <b>1</b> | 1             |
| Potassium bicarbonate                                                                                                                         | 1             | →<br>`                          | →<br>•                      | <b>→</b>                     | <b>↓</b>      | →<br>`        | 7             | -             | →<br>`        | -        | -             | -             | 1              | 1             | -             | 1        | 1              | 1             | -              | -             | 7             | <b>1</b> | -             |
| Potassium carbonate                                                                                                                           | 1             | <b>→</b>                        | 1                           | 1                            | ↓ .           | <b>→</b>      | 1             | <b>→</b>      | <b>→</b>      | <b>↑</b> | 1             | -             | -              | <b>↑</b>      | <b>↑</b>      | 1        | 1              | 1             | -              | -             | -             | <b>↑</b> | -             |
| Potassium chloride                                                                                                                            | 7             | 7                               | 7                           | 7                            | <b>→</b>      | 1             | <b>→</b>      | <b>↓</b>      | <b>→</b>      | <b>↑</b> | 1             | 1             | <b>→</b>       | 1             | 1             | 1        | 1              | 1             | 1              | 1             | 1             | <b>↑</b> | 1             |
| Potassium hydroxide (50%)                                                                                                                     | $\rightarrow$ | 1                               | ↑                           | nfluor                       | ↓             | 7             | R             | ↓             | R             | ↑        | $\rightarrow$ | $\rightarrow$ | R              | $\rightarrow$ | $\rightarrow$ | 1        | 7              | R             | $\rightarrow$  | 1             | 1             | ↑        | 1             |

Please note that the chemical resistance may be influenced by many factors, such as temperature, concentration, etc. This data is for reference only.



| Fluids                                                                                                                                        |               | -                               |                             |                              | body          | mate          | erials        | <br>3         | -             |      |               |               |               |               | oth           | ner m         | ateria        | als in        | cont          | act v         | vith f        | uid      |               |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------|-----------------------------|------------------------------|---------------|---------------|---------------|---------------|---------------|------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|----------|---------------|
| <ul> <li>↑ = Excellent</li> <li>→ = Acceptable</li> <li>▶ = Not recommended</li> <li>↓ = Do not use</li> <li>- = No data available</li> </ul> | Steel         | Stainless Steel<br>AISI 303/304 | Stainless Steel<br>AISI 316 | Stainless Steel<br>AISI 316L | Aluminum      | Bronze        | Cast Iron     | Brass         | PA            | PEEK | PPS           | Silver        | Copper        | 89            | EPDM          | FFKM          | FKM           | NBR           | UR.           | PET           | POM           | PTFE     | TPE           |
| Potassium nitrate                                                                                                                             | →             | 7                               | 1                           | 1                            | 1             | 1             | →             | <b>→</b>      | <b>→</b>      | 1    | 1             | 7             | →             | 1             | 1             | 1             | 1             | 1             | 1             | 1             | <b>→</b>      | 1        | <u> </u>      |
| Potassium phosphate                                                                                                                           | →             | <b>→</b>                        |                             |                              | <b>1</b>      | -             | J             | ,<br>→        | ,<br>→        | 1    | -             | _             | -             | 1             | 1             | 1             | 1             |               | -             | _             | -             | 1        | _             |
| Potassium sulfate                                                                                                                             | 1             | ,<br>→                          | 1                           | <b>1</b>                     | 1             |               | 1             | ,<br>→        |               | 1    | 1             | <b>→</b>      | <b>→</b>      | 1             | 1             | 1             | 1             | 1             | 1             | _             | -             | 1        | -             |
| Propane                                                                                                                                       | 1             | 1                               | 1                           | 1                            | 1             | 1             | <b>→</b>      |               | ,<br>  →      | 1    | 1             | -             | 1             | <i>'</i>      | <b>1</b>      | 1             | 1             | 1             | <i>'</i>      | 1             | 1             | 1        | <b>→</b>      |
| Propanol                                                                                                                                      | 1             | 1                               | 1                           | 1                            | -             | <u>'</u>      | 1             | 1             | →             | 1    | 1             | _             | -             | 1             | 1             | -             | <b>↓</b>      | <del> </del>  | <b>→</b>      | -             | -             | <u> </u> | -             |
| Propylene                                                                                                                                     | 1             | 1                               | 1                           | 1                            | 1             | -             | 1             | 1             | -             | _    | -             | 1             | 1             | <b>↓</b>      | <b>1</b>      | 1             | 1             | <b>1</b>      | <b>↓</b>      | 1             | 1             | 1        | -             |
| Propylene chloride                                                                                                                            | -             | '<br>  →                        | 1                           | 1                            | <b>1</b>      | -             | 1             | -             | -             | _    | -             | -             | <u> </u>      | 1             | <b>1</b>      | 1             | _ '<br>→      | $\downarrow$  | <b>1</b>      | _             | -             | 1        | -             |
| Pydraul 10E, 29ELT                                                                                                                            | -             | 1                               | 1                           | 1                            | •             | -             | 1             | _             | _             | _    | -             | 1             |               | 1             | $\rightarrow$ | 1             | 1             | <b>1</b>      | <b>↓</b>      | -             |               | 1        | -             |
| •                                                                                                                                             | 1             | <br>  →                         | 1                           | 1                            | -<br>→        | -<br>→        | <br>  →       |               | 1             | 1    | 1             | -             |               | <b>↓</b>      | →             | 1             | <b>↓</b>      | <b>1</b>      | <b>↓</b>      | -             | -<br>→        | <u> </u> | -             |
| Pyridine Saccharose                                                                                                                           |               | 1                               | 1                           | 1                            |               |               | 1             | ↑<br><i>γ</i> |               |      | <br>  →       | -             | →<br>¬        | 1             | 1             | -             | 1             | 1             | 1             | 7             | -             | 1        | Я             |
|                                                                                                                                               |               |                                 | -                           | -                            | -             | -             |               | -             | -             | -    | -             |               |               |               | 1             | -             |               | 1             |               | -             | -             |          | -             |
| SAE oils                                                                                                                                      | -             | -                               |                             |                              |               |               | -             |               |               | -    |               | -             | <b>→</b>      |               |               |               | <b>↑</b>      | <u> </u>      | 1             | -             |               | <b>↑</b> | -             |
| Salt water                                                                                                                                    | -             | 7                               | 7                           | 7                            | <b>1</b>      | 1             | ,<br>  \      | ,<br>  \      | <b>1</b>      | -    | <b>↑</b>      | -             | <b>→</b>      | 1             | <b>↑</b>      | 1             | 1             | 1             | ,<br>  \      | 1             | 1             | <u>↑</u> | 1             |
| Soda                                                                                                                                          | →<br>•        | 1                               | 1                           | 1                            | <b>\</b>      | <b>→</b>      | <b>→</b>      | <b>→</b>      | 1             | -    | 1             | 1             | <b>→</b>      | →<br>•        | 1             | 1             | <b>→</b>      | 7             | $\rightarrow$ | -             | 1             | 1        | <b>→</b>      |
| Sodium carbonate                                                                                                                              | 1             | <b>→</b>                        | 1                           | 1                            | 7             | 1             | <b>→</b>      | <b>→</b>      | <b>→</b>      | -    | 1             | 1             | <b>→</b>      | 1             | 1             | 1             | 1             | 1             | -             | 1             | 1             | 1        | <b>→</b>      |
| Sodium chloride                                                                                                                               | 7             | 7                               | →<br>•                      | <b>→</b>                     | 7             | 1             | <b>→</b>      | 7             | <b>→</b>      | 1    | 7             | <b>→</b>      | <b>→</b>      | 1             | 1             | 1             | 1             | 1             | 1             | 1             | 1             | 1        | 1             |
| Sodium hydroxide (caustic soda)                                                                                                               | 1             | <b>→</b>                        | 1                           | <b>↑</b>                     | <b>+</b>      | 1             | <i>'</i>      | <b>\</b>      | 1             | 1    | <b>→</b>      | 1             | 7             | <b>→</b>      | 1             | 1             | <b>→</b>      | , K           | <b>→</b>      | 1             | 1             | 1        | 1             |
| Sodium hypochlorite                                                                                                                           | 7             | A                               | 7                           | 7                            | <b>\</b>      | 7             | <b>\</b>      | R             | 7             | 1    | 7             | $\rightarrow$ | <b>1</b>      | 7             | <b>→</b>      | 1             | 1             | 7             | <b>1</b>      | $\rightarrow$ | <b>1</b>      | 1        | 7             |
| Sour natural gas                                                                                                                              | -             | -                               | <b>→</b>                    | <b>→</b>                     | -             | -             | -             | -             | -             | -    | -             | -             | -             | -             | <b>↓</b>      | 1             | <b>↓</b>      | ↓             | <b>↓</b>      | -             | -             | 1        | -             |
| Steam to 107 °C (225 °F)                                                                                                                      | 1             | 1                               | 1                           | 1                            | <b>↓</b>      | 1             | 1             | 1             | R             | -    | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | //            | 1             | 1             | <b>↓</b>      | . K           | <b>↓</b>      | -             | -             | 1        | -             |
| Steam 107 - 148 °C (225 - 300 °F)                                                                                                             | 1             | 1                               | 1                           | 1                            | <b>↓</b>      | 1             | 1             | 1             | 7             | -    | $\rightarrow$ | -             | -             | <b>1</b>      | 1             | 1             | <b>↓</b>      | <b>↓</b>      | <b>↓</b>      | -             | -             | 1        | -             |
| Steam over 148 °C (300 °F)                                                                                                                    | 1             | 1                               | 1                           | 1                            | <b>1</b>      | 1             | 7             | 1             | 7             | -    | $\rightarrow$ | -             | -             | ↓             | 7             | 1             | ↓             | <b>1</b>      | <b>1</b>      | -             | -             | 1        | -             |
| Stoddard solvent                                                                                                                              | 1             | 1                               | 1                           | 1                            | 1             | 1             | 1             | -             | 1             | -    | R             | -             | 1             | 7             | <b>↓</b>      | 1             | 1             | 1             | 1             | 1             | 1             | 1        | 7             |
| Sulphur dioxide, liquid                                                                                                                       | 1             | $\rightarrow$                   | 1                           | 1                            | <b>↓</b>      | $\rightarrow$ | <b>↓</b>      | 7             | 7             | 7    | 1             | 7             | 7             | <b>→</b>      | 1             | 1             | 1             | <b>↓</b>      | -             | 1             | <b>↓</b>      | 1        | 1             |
| Sulphuric acid, concentrated                                                                                                                  | 7             | <b>→</b>                        | <b>→</b>                    | $\rightarrow$                | <b>1</b>      | 7             | <b>\</b>      | ↓             | 7             | ↓    | $\rightarrow$ | <b>1</b>      | <b>\</b>      | 1             | <b>→</b>      | 1             | 1             | ↓             | <b>1</b>      | 7             | <b>\</b>      | 1        | 7             |
| Tetrachloroethylene                                                                                                                           | 1             | 1                               | 1                           | 1                            | <b>\</b>      | -             | 1             | $\rightarrow$ | 7             | -    | $\rightarrow$ | 1             | 1             | 1             | <b>1</b>      | 1             | 1             | <b>\</b>      | ↓             | 1             | 1             | 1        | -             |
| Tetrahydrofuran                                                                                                                               | 1             | 1                               | 1                           | 1                            | <b>→</b>      | 1             | -             | -             | 1             | 1    | R             | -             | -             | 1             | <b>→</b>      | 1             | <b>1</b>      | ↓             | 7             | R             | ↓             | 1        | $\rightarrow$ |
| Toluene                                                                                                                                       | $\rightarrow$ | 1                               | 1                           | 1                            | 1             | 1             | 1             | 1             | 1             | 1    | $\rightarrow$ | 1             | 1             | ↓             | <b>1</b>      | 1             | 1             | 7             | ↓             | -             | R             | 1        | R             |
| Tri chloro ethylene                                                                                                                           | $\rightarrow$ | $\rightarrow$                   | $\rightarrow$               | $\rightarrow$                | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | 1             | 7             | 1    | $\rightarrow$ | -             | 7             | ↓             | ↓             | 1             | 1             | 7             | ↓             | R             | $\rightarrow$ | 1        | ↓             |
| Tri chloro acetic acid                                                                                                                        | 7             | ↓                               | 7                           | 7                            | <b>1</b>      | -             | ↓             | 7             | 7             | -    | 1             | -             | ↓             | 7             | $\rightarrow$ | 1             | 7             | $\rightarrow$ | ↓             | $\rightarrow$ | ↓             | 1        | ↓             |
| Turpentine                                                                                                                                    | 1             | $\rightarrow$                   | 1                           | 1                            | 1             | 1             | $\rightarrow$ | R             | $\rightarrow$ | -    | 1             | 1             | $\rightarrow$ | 1             | ↓             | 1             | 1             | 1             | ↓             | $\rightarrow$ | 1             | 1        | $\rightarrow$ |
| Vaseline                                                                                                                                      | 1             | 1                               | 1                           | 1                            | -             | -             | 1             | 1             | 1             | -    | 1             | -             | -             | $\rightarrow$ | ↓             | -             | 1             | 1             | 1             | -             | -             | 1        | -             |
| Vegetable oils                                                                                                                                | 1             | 1                               | 1                           | 1                            | 1             | 1             | $\rightarrow$ | $\rightarrow$ | 1             | -    | -             | -             | -             | 1             | $\rightarrow$ | 1             | 1             | 1             | -             | 1             | 1             | 1        | -             |
| Vinegar                                                                                                                                       | 7             | 1                               | 1                           | 1                            | <b>1</b>      | 7             | 7             | 7             | 1             | -    | 1             | 1             | $\rightarrow$ | $\rightarrow$ | 1             | 1             | 1             | 7             | ↓             | 1             | $\rightarrow$ | 1        | 7             |
| Water                                                                                                                                         | -             | 1                               | 1                           | 1                            | -             | -             | -             | -             | -             | -    | -             | -             | -             | $\rightarrow$ | 1             | 1             | $\rightarrow$ | 1             | R             | -             | -             | 1        | 1             |
| Water, acid mine                                                                                                                              | 7             | $\rightarrow$                   | 1                           | 1                            | 1             | 7             | ↓             | 7             | 1             | -    | 1             | -             | ↓             | 1             | 1             | -             | 1             | $\rightarrow$ | -             | 1             | 1             | 1        | 1             |
| Water, deionized                                                                                                                              | 7             | 1                               | 1                           | 1                            | 1             | $\rightarrow$ | 7             | 1             | ↓             | -    | 1             | -             | $\rightarrow$ | 1             | 1             | $\rightarrow$ | 1             | $\rightarrow$ | -             | -             | $\rightarrow$ | 1        | 1             |
| Water, distilled lab                                                                                                                          | 7             | $\rightarrow$                   | 1                           | 1                            | $\rightarrow$ | 1             | 7             | $\rightarrow$ | $\rightarrow$ | 1    | 1             | 1             | 7             | 7             | 1             | -             | 1             | 1             | 1             | 1             | $\rightarrow$ | 1        | 1             |
| Water, drinking                                                                                                                               | -             | 1                               | 1                           | 1                            | 1             | -             | -             | ↓             | 1             | -    | -             | -             | -             | $\rightarrow$ | 1             | -             | 1             | 1             | ↓             | -             | -             | 1        | 1             |
| Water, fresh                                                                                                                                  | 1             | 1                               | 1                           | 1                            | $\rightarrow$ | 1             | $\rightarrow$ | 1             | 1             | -    | 1             | 1             | $\rightarrow$ | $\rightarrow$ | 1             | -             | 1             | 1             | 1             | 1             | 1             | 1        | 1             |
| Water, heavy                                                                                                                                  | -             | -                               | -                           | -                            | -             | -             | -             | -             | 1             | -    | 1             | -             |               | $\rightarrow$ | 1             | 1             | 1             | 1             | ↓             | 1             | 1             | 1        | 1             |
| Water, sea/river                                                                                                                              | 7             | $\rightarrow$                   | $\rightarrow$               | 1                            | $\rightarrow$ | $\rightarrow$ | R             | R             | $\rightarrow$ | 1    | 1             | 1             | $\rightarrow$ | $\rightarrow$ | 1             | -             | 1             | $\rightarrow$ | 1             | 1             | 1             | 1        | 1             |
| Water glass                                                                                                                                   | 1             | 1                               | 1                           | 1                            | -             | -             | 1             | $\rightarrow$ | 1             | -    | 1             | -             | $\rightarrow$ | 1             | 1             | -             | 1             | 1             | ĸ             | 1             | 1             | 1        | 1             |
| Waterproofing salt                                                                                                                            | -             | 7                               | 7                           | 7                            | $\rightarrow$ | 1             | <b>\</b>      | $\rightarrow$ | 1             | -    | 1             | -             | -             | $\rightarrow$ | -             | -             | -             | $\rightarrow$ | ĸ             | 1             | 1             | 1        | 1             |
| Xenon                                                                                                                                         | 7             | 1                               | 1                           | 1                            | 1             | -             | ĸ             | 1             | 1             | 1    | 1             | -             | -             | 1             | 1             | 1             | 1             | 1             | 1             | 1             | -             | 1        | -             |
| Xylene                                                                                                                                        | 1             | $\rightarrow$                   | $\rightarrow$               | $\rightarrow$                | 1             | 1             | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | 1    | $\rightarrow$ | 1             | 1             | <b>1</b>      | $\downarrow$  | 1             | 1             | <b>1</b>      | <b>↓</b>      | $\rightarrow$ | 1             | 1        | $\rightarrow$ |
| Zinc chloride                                                                                                                                 | 1             | 7                               | 7                           | 7                            | <b>\</b>      | 7             | <b>\</b>      | <b>\</b>      | 1             | 1    | 1             | $\rightarrow$ | <b>\</b>      | 1             | 1             | 1             | 1             | 1             | 1             | 1             | <b>\</b>      | 1        | 1             |
|                                                                                                                                               |               |                                 |                             |                              |               |               |               |               |               |      |               |               |               |               |               |               |               |               |               |               |               |          |               |

Please note that the chemical resistance may be influenced by many factors, such as temperature, concentration, etc. This data is for reference only.



# **CONVERSION TABLES**

| Length |        |       |        |        |
|--------|--------|-------|--------|--------|
|        | meter  | inch  | foot   | yard   |
| 1 m    | 1      | 39.37 | 3.2808 | 1.0936 |
| 1 in   | 0.0254 | 1     | 0.0833 | 0.0278 |
| 1 ft   | 0.3048 | 12    | 1      | 0.033  |
| 1 yd   | 0.9144 | 36    | 3      | 1      |

1 m = 10-3 km = 10 dm = 102 cm = 103 mm = 106 μm = 1012 nm

| Area              | Area                |                            |             |                           |                          |  |  |  |  |  |  |  |  |
|-------------------|---------------------|----------------------------|-------------|---------------------------|--------------------------|--|--|--|--|--|--|--|--|
|                   | cm <sup>2</sup>     | m <sup>2</sup>             | sq.<br>inch | sq. foot                  | sq. yard                 |  |  |  |  |  |  |  |  |
| 1 cm <sup>2</sup> | 1                   | 1 x 10 <sup>-4</sup>       | 0.155       | 1.0764 x 10 <sup>-3</sup> | 1.196 x 10 <sup>-4</sup> |  |  |  |  |  |  |  |  |
| 1 m <sup>2</sup>  | 1 x 10 <sup>4</sup> | 1                          | 1550        | 10.764                    | 1.196                    |  |  |  |  |  |  |  |  |
| 1 sq in           | 6.4516              | 0.64516 x 10 <sup>-3</sup> | 1           | 0.00694                   | 0.772 x 10 <sup>-3</sup> |  |  |  |  |  |  |  |  |
| 1 sq ft           | 929.0               | 0.0929                     | 144         | 1                         | 0.1111                   |  |  |  |  |  |  |  |  |
| 1 sq yd           | 8360                | 0.8360                     | 1296        | 9                         | 1                        |  |  |  |  |  |  |  |  |

 $<sup>1 \</sup>text{ m}^2 = 10^{-6} \text{ km}^2 = 10^{-4} \text{ ha} = 100 \text{ dm}^2 = 10^6 \text{ mm}^2$ 

| Mass             |             |       |                          |                           |
|------------------|-------------|-------|--------------------------|---------------------------|
|                  | Isila awawa |       | to                       | ns                        |
|                  | kilogram    | pound | short (US)               | long (Imp)                |
| 1 kg             | 1           | 2.205 | 1.102 x 10 <sup>-3</sup> | 0.9843 x 10 <sup>-3</sup> |
| 1 lb             | 0.4536      | 1     | 0.500 x 10 <sup>-3</sup> | 0.4464 x 10 <sup>-3</sup> |
| 1 short ton (US) | 907.2       | 2000  | 1                        | 0.8929                    |
| 1 long ton (Imp) | 1016        | 2240  | 1.12                     | 1                         |

1 kg = 103 g = 102 dkg

| Density             |         |                   |                |          |            |
|---------------------|---------|-------------------|----------------|----------|------------|
|                     | kg/ltr  | kg/m <sup>3</sup> | pound<br>cubic |          | und<br>lon |
|                     |         |                   | foot           | Imperial | US         |
| 1 kg/ltr            | 1       | 1000              | 62.43          | 10.022   | 8.345      |
| 1 kg/m <sup>3</sup> | 0.001   | 1                 | 0.06243        | 0.010022 | 0.008345   |
| 1 lb/cu ft          | 0.01602 | 16.02             | 1              | 0.16054  | 0.1337     |
| 1 lb/gal (Imp)      | 0.0998  | 99.78             | 6.229          | 1        | 0.8327     |
| 1 lb/gal (US)       | 0.1198  | 119.8             | 7,481          | 1.201    | 1          |

| Volume           |                           |                           |        |                           |                          |                          |
|------------------|---------------------------|---------------------------|--------|---------------------------|--------------------------|--------------------------|
|                  | liter                     | m3                        | cubic  | cubic                     |                          | ons                      |
|                  | (dm <sup>3</sup> )        |                           | inch   | foot                      | US                       | Imperial                 |
| 11               | 1                         | 1 x 10 <sup>-3</sup>      | 61.024 | 0.03531                   | 0.2642                   | 0.220                    |
| 1 m <sup>3</sup> | 1000                      | 1                         | 61024  | 35.31                     | 264.2                    | 220                      |
| 1 cu in          | 16.387 x 10 <sup>-3</sup> | 16.387 x 10 <sup>-6</sup> | 1      | 0.5787 x 10 <sup>-3</sup> | 4.329 x 10 <sup>-3</sup> | 3.606 x 10 <sup>-3</sup> |
| 1 cu ft          | 28.320                    | 28.320 x 10 <sup>-3</sup> | 1728   | 1                         | 7.481                    | 6.229                    |
| 1 US gal         | 3.785                     | 3.785 x 10 <sup>-3</sup>  | 231    | 0.1337                    | 1                        | 0.8327                   |
| 1 Imp gal        | 4.546                     | 4.546 x 10 <sup>-3</sup>  | 277.3  | 0.1605                    | 1.210                    | 1                        |

Imperial = British

| Specific Volume      |        |         |                  |  |  |  |
|----------------------|--------|---------|------------------|--|--|--|
|                      | ltr/kg | m³/kg   | cubic foot pound |  |  |  |
| 1 ltr/kg             | 1      | 0.001   | 0.01602          |  |  |  |
| 1 m <sup>3</sup> /kg | 1000   | 1       | 16.02            |  |  |  |
| 1 cu ft/lb           | 62.43  | 0.06243 | 1                |  |  |  |

| Force |        |           |         |  |  |  |  |
|-------|--------|-----------|---------|--|--|--|--|
|       | Newton | kilopound | poundal |  |  |  |  |
| 1 N   | 1      | 0.1020    | 7.24    |  |  |  |  |
| 1 kp  | 9.807  | 1         | 70.90   |  |  |  |  |
| 1 pdl | 0.1383 | 0.0141    | 1       |  |  |  |  |

<sup>1</sup> N = 10<sup>5</sup> dyn; 1 dyn = 1 g x 1 cm/S<sup>2</sup>; 1 kg = 1 kg x g 1 Poundal = 1 Pound x g

| Pressure                  |                              |                           |                  |                          |                                 |                      |             |                                        |                     |
|---------------------------|------------------------------|---------------------------|------------------|--------------------------|---------------------------------|----------------------|-------------|----------------------------------------|---------------------|
|                           | 1 bar =<br>10 <sup>5</sup> N | 1 at =<br>1 Kp            | poundal<br>sq ft | poundal<br>sq in         | 1 atm<br>= 760 Torr<br>= 760 mm | Hg column<br>(0m °C) |             | H <sub>2</sub> O column (WC)<br>(4 °C) |                     |
|                           | m <sup>2</sup>               | 1 Kp<br>cm <sup>2</sup>   | sq ft            | = Psi                    | Hg<br>(0 °C)                    | mm Hg<br>= Torr      | in Hg       | m H <sub>2</sub> O                     | ft H <sub>2</sub> O |
| 1 Pa = 1 N/m <sup>2</sup> | 1 x 10 <sup>-5</sup>         | 1.02 x 10 <sup>-5</sup>   | 0.0209           | 1.45 x 10-4              | 9.87 x 10 <sup>-6</sup>         | 0.0075               | 2.95 x 10-4 | 1.02 x 10-4                            | 3.35 x 10-4         |
| 1 bar                     | 1                            | 1.0197                    | 2089             | 14.504                   | 0.9869                          | 750                  | 29.5        | 10.20                                  | 33.5                |
| 1 at                      | 0.980665                     | 1                         | 2048             | 14.22                    | 0.96784                         | 735.56               | 29.0        | 10.00                                  | 32.8                |
| 1 pdl/sq ft               | 0.4790 x 10 <sup>-3</sup>    | 0.4882 x 10 <sup>-3</sup> | 1                | 6.944 x 10 <sup>-3</sup> | 0.4725 x 10 <sup>-3</sup>       | 0.359                | 0.141       | 4.88 x 10 <sup>-3</sup>                | 0.0160              |
| 1 pdl/sq in = psi         | 0.06895                      | 0.07031                   | 144              | 1                        | 0.06806                         | 51.7                 | 2.04        | 0.703                                  | 2.31                |
| 1 atm                     | 1.013                        | 1.033                     | 2120             | 14.70                    | 1                               | 760                  | 29.09       | 10.33                                  | 33.9                |
| 1 mm Hg                   | 1.330 x 10 <sup>-3</sup>     | 1.360 x 10 <sup>-3</sup>  | 2.78             | 0.0193                   | 1.316 x 10 <sup>-3</sup>        | 1                    | 0.0394      | 0.0136                                 | 0.0446              |
| 1 in Hg                   | 0.0339                       | 0.0345                    | 70.7             | 0.4910                   | 0.0334                          | 25.4                 | 1           | 0.3450                                 | 1.133               |
| 1 m H <sub>2</sub> O      | 0.0981                       | 0.1000                    | 205              | 1.4220                   | 0.0968                          | 73.6                 | 2.90        | 1                                      | 3.28                |
| 1 ft H <sub>2</sub> O     | 0.0299                       | 0.0305                    | 62.4             | 0.4340                   | 0.0295                          | 22.4                 | 0.883       | 0.3050                                 | 1                   |

 $<sup>1 \</sup>frac{N}{m^2} = Pa (Pascal) = 10 \frac{dyn}{cm^2}$ 

 $<sup>1 \</sup>frac{kp}{m^2} = 10-4 \frac{kp}{cm^2} = 1 \text{ mm WC (at 4 °C)}$ 

| Work, Energy, | Nork, Energy, and Heat Content |                          |                           |                         |                          |                          |                           |                           |                        |
|---------------|--------------------------------|--------------------------|---------------------------|-------------------------|--------------------------|--------------------------|---------------------------|---------------------------|------------------------|
|               |                                |                          | Btu                       |                         |                          |                          | wer hour<br>ph)           | ton-day                   | 1 Joule                |
|               | 1 kcal                         | 1 kp m                   | (British<br>thermal unit) | ft poundal              | 1 kWh                    | metrical<br>75 kp m h    | imperial<br>550 ft. lb h  | of<br>refrigeration       | = 1 Nm<br>= Ws         |
| 1 kcal        | 1                              | 427.0                    | 3.968                     | 3088                    | 1.163 x 10 <sup>-3</sup> | 1.581 x 10 <sup>-3</sup> | 1.560 x 10 <sup>-3</sup>  | 13.779 x 10-6             | 4190                   |
| 1 kpm         | 2.342 x 10 <sup>-3</sup>       | 1                        | 9.294 x 10 <sup>-3</sup>  | 7.233                   | 2.723 x 10-6             | 3.704 x 10 <sup>-6</sup> | 3.653 x 10 <sup>-6</sup>  | 32.270 x 10 <sup>-6</sup> | 9.807                  |
| 1 Btu         | 0.252                          | 107.59                   | 1                         | 778.0                   | 0.293 x 10 <sup>-3</sup> | 0.398 x 10 <sup>-3</sup> | 0.3931 x 10 <sup>-3</sup> | 3.472 x 10 <sup>-6</sup>  | 1055                   |
| 1 ft pdl      | 0.3238 x 10 <sup>3</sup>       | 0.13826                  | 1.285 x 10 <sup>-3</sup>  | 1                       | 0.377 x 10 <sup>-6</sup> | 0.512 x 10 <sup>-6</sup> | 0.505 x 10 <sup>-6</sup>  | 4.462 x 10 <sup>-9</sup>  | 1.356                  |
| 1 kWh         | 860                            | 367.1 x 10 <sup>-3</sup> | 3412.8                    | 2.655 x 106             | 1                        | 1.360                    | 1.341                     | 11.850 x 10 <sup>-3</sup> | 2.6 x 10 <sup>6</sup>  |
| 1 PSh         | 632.3                          | 270 x 10 <sup>-3</sup>   | 2509                      | 1.953 x 106             | 0.7353                   | 1                        | 0.9863                    | 8.713 x 10 <sup>-3</sup>  | 2.65 x 10 <sup>6</sup> |
| 1 hph         | 641.1                          | 273.7 x 10 <sup>-3</sup> | 2545                      | 1.980 x 10 <sup>6</sup> | 0.7457                   | 1.014                    | 1                         | 8.834 x 10 <sup>-3</sup>  | 2.68 x 10 <sup>6</sup> |
| 1 ton-day     | 72.57 x 10 <sup>-3</sup>       | 30.99 x 10 <sup>-3</sup> | 288 x 10 <sup>3</sup>     | 244.1 x 106             | 84.39                    | 144.78                   | 113.2                     | 1                         | 304 x 10 <sup>6</sup>  |
| 1 J           | 0.239 x 10 <sup>-3</sup>       | 0.102                    | 0.948 x 10 <sup>-3</sup>  | 0.738                   | 0.278 x 10 <sup>-6</sup> | 0.378 x 10 <sup>-6</sup> | 0.372 x 10 <sup>-6</sup>  | 3.280 x 10 <sup>-9</sup>  | 1                      |

 $<sup>1 \</sup>text{ erg} = 1 \text{ dyn cm} = 10^{-7} \text{ Nm}; 1 \text{ kJ} = 10^{3} \text{ J}$ 

| Capacity, E | Capacity, Energy Flow, and Heat Flow |                          |                           |                                                       |                          |                                 |                            |                                       |                           |
|-------------|--------------------------------------|--------------------------|---------------------------|-------------------------------------------------------|--------------------------|---------------------------------|----------------------------|---------------------------------------|---------------------------|
|             | 1 kcal                               | 1 kp m                   | British<br>thermal        | 1 kcal/s = Horsepower hour (HP) British theor. 1 kW = |                          |                                 | US<br>Standard             | British<br>commercial                 |                           |
|             | h                                    | s                        | unit<br>per hour          | unit of<br>refrigeration                              | 1 kJ/s                   | metrical<br>75 <u>kp m</u><br>s | imperial<br>550 ft lb<br>s | commercial<br>ton of<br>refrigeration | ton of refrigeration      |
| 1 kcal/h    | 1                                    | 0.1186                   | 3.968                     | 0.278 x 10 <sup>-3</sup>                              | 1.163 x 10 <sup>-3</sup> | 1.581 x 10 <sup>-3</sup>        | 1.560 x 10 <sup>-3</sup>   | 0.331 x 10 <sup>-3</sup>              | 0.299 x 10 <sup>-3</sup>  |
| 1 kp m/s    | 8.4312                               | 1                        | 33.455                    | 2.342 x 10 <sup>-3</sup>                              | 9.804 x 10 <sup>-3</sup> | 13.333 x 10 <sup>-3</sup>       | 13.150 x 10 <sup>-3</sup>  | 2.792 x 10 <sup>-3</sup>              | 2.520 x 10 <sup>-3</sup>  |
| 1 Btu/h     | 0.252                                | 29.89 x 10 <sup>-3</sup> | 1                         | 0.07 x 10 <sup>-3</sup>                               | 0.293 x 10 <sup>-3</sup> | 0.398 x 10 <sup>-3</sup>        | 0.393 x 10 <sup>-3</sup>   | 0.083 x 10 <sup>-3</sup>              | 75.310 x 10 <sup>-3</sup> |
| 1 kcal/s    |                                      |                          |                           |                                                       |                          |                                 |                            |                                       |                           |
| Brur        | 3600                                 | 427.0                    | 14.285 x 10 <sup>-3</sup> | 1                                                     | 4.186                    | 5.693                           | 5.615                      | 1.190                                 | 1.078                     |
| 1 kW        | 860.0                                | 102.0                    | 3414                      | 0.2389                                                | 1                        | 1.360                           | 1.341                      | 0.2846                                | 0.2572                    |
| 1 HP        | 632.3                                | 75                       | 2509.3                    | 0.1756                                                | 0.736                    | 1                               | 0.9863                     | 0.2094                                | 0.1891                    |
| 1 hp        | 641.2                                | 76.04                    | 2545                      | 0.1781                                                | 0.7455                   | 1.014                           | 1                          | 0.2123                                | 0.21227                   |
| 1 ton       | 3024                                 | 358.2                    | 12.0 x 10 <sup>3</sup>    | 0.831                                                 | 3.513                    | 4.776                           | 4.711                      | 1                                     | 0.9037                    |
| 1 Br ton    | 3340                                 | 396.9                    | 13.26 x 10 <sup>3</sup>   | 0.9277                                                | 3.888                    | 5.287                           | 5.214                      | 1.1045                                | 1                         |

| Enthalpy Difference, Specific Heat |          |            |              |  |  |  |
|------------------------------------|----------|------------|--------------|--|--|--|
| Δh                                 | kJ<br>kg | kcal<br>kg | Btu<br>pound |  |  |  |
| 1 kJ/kg                            | 1        | 0.239      | 0.43         |  |  |  |
| 1 kcal/kg                          | 4.19     | 1          | 1.80         |  |  |  |
| 1 Btu/lb                           | 2.33     | 0.556      | 1            |  |  |  |

| Entropy Difference, Specific Heat |                    |               |                  |  |  |  |
|-----------------------------------|--------------------|---------------|------------------|--|--|--|
| Δs                                | k <u>J</u><br>kg K | kcal<br>kg °C | Btu_<br>pound °F |  |  |  |
| 1 kJ/kg K                         | 1                  | 0.239         | 0.239            |  |  |  |
| 1 kcal/kg °C                      | 4.19               | 1             | 1                |  |  |  |
| 1 Btu/lb °F                       | 4.19               | 1             | 1                |  |  |  |

# Formulas for temperature calculation

| F0.03 (F0.03 A.0)(0      | FO-1 FOOT A /- AA      | FIG. 1003 ATA 15    |
|--------------------------|------------------------|---------------------|
| [°C] = ([°F] – 32) × 5/9 | [°F] = [°C] × 9/5 + 32 | [K] = [°C] + 273.15 |

# **Temperatures**

Common temperatures in degrees Kelvin and corresponding Celsius and Fahrenheit equivalents

Kelvin (K)

Celsius (°C)

Fahrenheit (°F)

Kelvin (K)

| Kelvin (K) | Celsius (°C) | Fahrenheit (°F) |
|------------|--------------|-----------------|
| 0          | -273         | -459            |
| 17         | -256         | -429            |
| 33         | -240         | -400            |
| 49         | -224         | -371            |
| 65         | -208         | -342            |
| 81         | -192         | -314            |
| 97         | -176         | -285            |
| 113        | -160         | -256            |
| 129        | -144         | -227            |
| 145        | -128         | -198            |
| 161        | -112         | -170            |
| 177        | -96          | -141            |
| 193        | -80          | -112            |
| 209        | -64          | -83             |
| 225        | -48          | -54             |
| 241        | -32          | -26             |
| 257        | -16          | -3              |

| Kelvin (K) | Celsius (°C) | Fahrenheit (°F) |
|------------|--------------|-----------------|
| 273        | 0            | 32              |
| 289        | 16           | 61              |
| 305        | 32           | 90              |
| 321        | 48           | 118             |
| 337        | 64           | 147             |
| 353        | 80           | 176             |
| 373        | 100          | 212             |
| 385        | 112          | 234             |
| 401        | 128          | 262             |
| 417        | 144          | 291             |
| 433        | 160          | 320             |
| 449        | 176          | 349             |
| 465        | 192          | 378             |
| 481        | 208          | 406             |
| 497        | 224          | 435             |
| 513        | 240          | 464             |
| 529        | 256          | 493             |

(Orifice) Sizes Common valve orifice sizes and equivalents in mm

|       | inches   | mm   |
|-------|----------|------|
| 3/64  | (0.0469) | 1.19 |
| 1/16  | (0.0625) | 1.59 |
| 5/64  | (0.0781) | 1.98 |
| 3/32  | (0.0937) | 2.38 |
| 1/8   | (0.1250) | 3.18 |
| 5/32  | (0.1562) | 3.97 |
| 11/64 | (0.1719) | 4.37 |
| 3/16  | (0.1875) | 4.76 |
| 7/32  | (0.2187) | 5.55 |
| 1/4   | (0.2500) | 6.35 |
| 9/32  | (0.2812) | 7.14 |
| 5/16  | (0.3125) | 7.94 |

| inches |          | mm    |
|--------|----------|-------|
| 7/17   | (0.4375) | 11.11 |
| 1/2    | (0.5000) | 12.70 |
| 5/8    | (0.6250) | 15.88 |
| 11/16  | (0.6875) | 17.46 |
| 3/4    | (0.7500) | 19.05 |
| 1      | (1.000)  | 25.40 |
| 1 1/8  | (1.250)  | 28.58 |
| 1 1/4  | (1.2500) | 31.75 |
| 1 1/2  | (1.5000) | 38.10 |
| 1 3/4  | (1.7500) | 44.45 |
| 2      | (2.0000) | 50.80 |
| 3      | (3.0000) | 76.20 |

# Maximize precision, reliability and functionality of your analytical and medical devices



**ASCO**<sup>™</sup>

Emerson delivers time-tested and innovative automation solutions designed to help you improve your device's overall accuracy and reliability. Contact us now for world-class technologies and services that can maximize your analytical or medical application. Getting started is easy. Visit Emerson.com/ASCO